
COMPUTER

COMMUNICATIONS

AND NETWORKS

Peer-to-Peer

Computing
Building Supercomputers

with Web Technologies

ALFRED WAI-SING LOO

P1: OTE/SPH P2: OTE
SVNY285-Loo October 25, 2006 20:48

Computer Communications and Networks

i

P1: OTE/SPH P2: OTE
SVNY285-Loo October 25, 2006 20:48

The Computer Communications and Networks series is a range of textbooks, monographs
and handbooks. It sets out to provide students, researchers and non-specialists alike with
a sure grounding in current knowledge, together with comprehensible access to the latest
developments in computer communications and networking.

Emphasis is placed on clear and explanatory styles that support a tutorial approach, so that
even the most complex of topics is presented in a lucid and intelligible manner.

Also in this series:

An Information Security Handbook
John M.D. Hunter
1-85233-180-1

Multimedia Internet Broadcasting: Quality, Technology and Interface
Andy Sloane and Dave Lawrence (eds.)
1-85233-283-2

UMTS: Origins, Architecture and the Standard
Pierre Lescuyer (Translation Editor: Frank Bott)
1-85233-676-5

Designing Software for the Mobile Context: A Practitioner’s Guide
Roman Longoria
1-85233-785-0

OSS for Telecom Networks
Kundan Misra
1-85233-808-3

The Quintessential PIC® Microcontroller 2nd edition
Sid Katzen
1-85233-942-X

From P2P to Web Services and Grids: Peers in a Client/Server World
Ian J. Taylor
1-85233-869-5

Intelligent Spaces: The Application of Pervasive ICT
Alan Steventon and Steve Wright (eds)
1-84628-002-8

Ubiquitous and Pervasive Commerce
George Roussos (ed.)
1-84628-035-4

Information Assurance: Security in the Information Environment 2nd edition
Andrew Blyth and Gerald L. Kovacich
1-84628-266-7

ii

P1: OTE/SPH P2: OTE
SVNY285-Loo October 25, 2006 20:48

Alfred Wai-Sing Loo

Peer-to-Peer
Computing
Building Supercomputers with Web

Technologies

iii

P1: OTE/SPH P2: OTE
SVNY285-Loo October 25, 2006 20:48

Alfred Wai-Sing Loo, BSc, MSc, PhD, MBCS, MIMA, CEng, CSci, CMath, CITP
Department of Computing and Decision Sciences, Lingnan University,
Tuen Mun, Hong Kong

Series Editor
Professor A.J. Sammes, BSc, MPhil, PhD, FBCS, CEng.
CISM Group, Cranfield University, RMCS, Shrivenham, Swindon SN6 8LA,
UK

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2006925862

Computer Communications and Networks ISSN 1617-7975
ISBN-10: 1-84628-381-7 Printed on acid-free paper
ISBN-13: 978-1-84628-381-9

© Alfred Wai-Sing Loo 2007

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of
a specific statement, that such names are exempt from the relevant laws and regulations and therefore
free for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the infor-
mation contained in this book and cannot accept any legal responsibility or liability for any errors or
omissions that may be made.

9 8 7 6 5 4 3 2 1

springer.com

iv

P1: OTE/SPH P2: OTE
SVNY285-Loo October 25, 2006 20:48

v

To my wife, Rebecca, for her love and support

P1: OTE/SPH P2: OTE
SVNY285-Loo October 25, 2006 20:48

Contents

1 Overview of Peer-to-Peer System .. 1
1.1 Introduction ... 1
1.2 Batch Modes .. 1
1.3 On-Line Modes... 3
1.4 Client-Server.. 5
1.5 Peer-to-Peer Systems.. 6

2 File-Sharing Peer-to-Peer System .. 9
2.1 Introduction ... 9
2.2 Famous Napster Model ... 9
2.3 Gnutella .. 10
2.4 BitTorrent.. 13
2.5 Common Features.. 17
2.6 Legal Challenges ... 17

3 The Need for More Powerful Computers 18
3.1 Introduction ... 18
3.2 Problems of Parallel Computers... 19
3.3 CPU Power Sharing Examples .. 20
3.4 Need for Parallel Algorithms .. 22
3.5 Metrics in Parallel Systems .. 23
3.6 Summary... 27

4 Problems and Solutions... 28
4.1 Problems... 28
4.2 Desirable Characteristics of P2P Systems................................. 29
4.3 Enabling Technologies .. 30
4.4 Overview of Our Solution .. 31
4.5 Comparison ... 32
4.6 Impact .. 33

vii

P1: OTE/SPH P2: OTE
SVNY285-Loo October 25, 2006 20:48

viii Contents

5 Web Server and Related Technologies 34
5.1 Introduction... 34
5.2 Web Servers .. 34
5.3 Apache Tomcat .. 35
5.4 Starting the Tomcat Server... 40
5.5 Better Development Environment...................................... 43
5.6 Directories .. 46
5.7 Mapping Between URL and Servlet 50
5.8 Selection of Web Servers .. 53

6 Introduction to Servlets ... 56
6.1 Introduction... 56
6.2 Servlets .. 56
6.3 Servlet Lifecycle... 57
6.4 Servlet Collaboration ... 58
6.5 Basic Structure of Servlet.. 59
6.6 Sending and Receiving Information 60
6.7 Testing your First Servlet .. 62
6.8 Testing Second Servlet (Without html File) 64
6.9 Further Tests.. 66
6.10 Compiling the Servlet .. 66

7 Java Network Programming... 67
7.1 Introduction... 67
7.2 URL Connection... 67
7.3 Socket Communication... 69
7.4 Datagram.. 79
7.5 Differences ... 90

8 Testing and Enhancements of Servlets 91
8.1 Introduction... 91
8.2 Debugging Techniques ... 91
8.3 Global Parameters... 95
8.4 Synchronization ... 101
8.5 Tips to Speed up Testing ... 103
8.6 Troubleshooting ... 104

9 Power Server: Model 1 .. 106
9.1 Introduction... 106
9.2 Model Without Web Server—Model 1 107
9.3 First Test .. 130
9.4 Second Test... 131
9.5 Troubleshooting ... 132
9.6 Further Tests.. 133

P1: OTE/SPH P2: OTE
SVNY285-Loo October 25, 2006 20:48

Contents ix

10 Power Server: Model 2 .. 134
10.1 Introduction... 134
10.2 Power Server with Web Server—Model 2 135
10.3 Server Side Programs... 139
10.4 Phase 1 Testing—invokeServer Program 141
10.5 Phase 2 Testing .. 143

11 Power Server: Model 3 .. 147
11.1 Introduction... 147
11.2 Power Server—Model 3.. 147
11.3 Server Program of Model 3.. 148
11.4 Client Program of Model 3 .. 151
11.5 divide.java Module.. 158
11.6 share2.java .. 158
11.7 Testing... 158
11.8 Comparison with Model 1 ... 163

12 Power Server: Model 4 .. 165
12.1 Introduction... 165
12.2 Power Server with Web Server—Model 4 165
12.3 Server Side Program.. 166
12.4 Testing the invokeServer2 Program.................................... 169
12.5 Testing the System .. 172

13 Power Server: Model 5 .. 175
13.1 Introduction... 175
13.2 Power Server—Model 5.. 175
13.3 Server Side Program.. 176
13.4 Client Side Program .. 176
13.5 Testing... 182
13.6 Comparison with Model 4 ... 186
13.7 Further Tests.. 187
13.8 Other Improvements .. 187

14 Wireless P2P System... 188
14.1 Introduction... 188
14.2 IEEE802 Standards ... 189
14.3 Bluetooth.. 189
14.4 Wireless LAN.. 190
14.5 Wireless Routers... 190
14.6 Internet-Enabled Devices .. 190
14.7 Problems of Mobile Phones ... 191
14.8 Extending the Power of Mobile Phones............................... 192
14.9 Wireless P2P Systems with Mobile Phones 193

P1: OTE/SPH P2: OTE
SVNY285-Loo October 25, 2006 20:48

x Contents

15 Implementation of Wireless P2P Systems 196
15.1 Introduction... 196
15.2 Client—Mobile Phone.. 196
15.3 Tier 1 Server Program—phoneServlet.java........................... 196
15.4 Tier-2 Server Side Program.. 201
15.5 Tools for Mobile Phone Development................................. 201
15.6 Testing the Wireless P2P... 201
15.7 Experiments with More Sub-tasks 204
15.8 Conclusions... 207

16 Computer Architecture ... 209
16.1 Introduction... 209
16.2 Classification of Computer Architectures............................. 209
16.3 Granularity.. 213
16.4 General or Specially Designed Processors............................ 215
16.5 Processor Networks ... 215
16.6 Shared Memory Connection... 224
16.7 Summary.. 224

17 Distributed and Parallel Algorithms .. 227
17.1 Introduction... 227
17.2 Overview of Serial Sorting .. 228
17.3 Characteristics of Sorting Algorithms 234
17.4 Parallel Sorting Algorithms for MIMD with

Shared Memory.. 234
17.5 Parallel Sorting Algorithms for MIMD with

Distributed Memory .. 238
17.6 Conclusions... 238

18 Infrastructure and Future Development 240
18.1 Infrastructure ... 240
18.2 Incentives ... 241
18.3 Maintenance.. 242
18.4 Future P2P Development .. 244
18.5 Problems of Data-Sharing P2P System................................ 245
18.6 Efficient Parallel Algorithms .. 246
18.7 Re-Visiting Speed Up... 246
18.8 Applications .. 247
18.9 Further Improvements .. 247

Appendix A: Data-Sharing P2P Algorithm 248

Appendix B: Usefull Websites.. 260

Bibliography.. 262

Index ... 267

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

1
Overview of Peer-to-Peer System

1.1 Introduction

Peer-to-peer (P2P) computing is the sharing of resources between computers. Such
resources include processing power, knowledge, disk storage and information from
distributed databases (Kamath, 2001). In the last several years, about half a billion
dollars have been invested in companies developing P2P systems.

This kind of interest is due to the success of several high-profile and well-known
P2P applications such as the Napster and Oxford anti-cancer projects (Loo, 2003).
The concept of sharing resources is not completely new. Indeed, P2P systems are
a natural evolution in system architecture. It is worthwhile to have a brief look at
this evolution.

1.2 Batch Modes

Mainframe computers were important tools for large enterprises. In the old days,
there was only one computer in one organization as the machines were prohibitively
expensive. They required special rooms with air-conditioning. The operation of
these computers (Fig. 1.1) is described next.

End users used to write down input data on special forms. These forms were
passed to the data entry section periodically (e.g., once a day or once a month
depending on the nature of the process). Data entry operators typed the data with
special machines, which converted the data into punch card, magnetic tape and/or
magnetic disk. Such input mediums were passed to computer room. A computer
operator then fed the data into computer. The computer processed the data and
printed the reports. Such reports were sent back to the users together with their
input forms.

Obviously, this ‘batch processing’ mode of operation suffers from several
problems:

1. Input data forms are collected periodically as a batch. It is not uncommon that
users need to wait for a few days to get their computer reports. Such kinds of

1

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

2 1. Overview of Peer-to-Peer System

End user

1. Write down
input data

2. Send input
documents to
IT department

12. Check
correctness
of printouts

User department IT department

I-O control
staff

Data entry
operator

Computer
operator

3. Check input
documents

4. Type
and verify

6. Check
input medium

7. Send input
medium

10. Check
completeness

11. Send input
documents

and computer
printouts

5. Return input
documents

to control staff
(with input
medium)

8. Record and
arrange schedule

9. Feed input
to computer

Input
documents

Input
documents

Computer
reports

Computer
printouts

Input
document

Input
documents

+

Figure 1.1. Operation of batch system.

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

On-Line Modes 3

delays are acceptable for systems such as payroll as they are done periodically.
However, it is not satisfactory for systems that need immediate answers, such as
an inventory control system.
2. End users collect the data and write them down on input forms. Data entry
operators do the typing. As the data entry operators do not have the knowledge
of the applications, it is easier to make typing mistakes. It is more difficult for
them to detect problems. A ‘verifying’ process is commonly used to overcome
this problem. The idea is simple but the cost is heavy. The input data are typed by
one operator. Then another operator types it again. The system compares the first
typing with the second typing. Any discrepancy detected will be reported so the
data entry operator can check the problem. This process is effective in detecting
typing errors but is expensive as we need to type twice for all critical systems. It
is also time consuming and causes delays in further processing.

1.3 On-Line Modes

Since hardware costs decreased and technology advanced, the ‘on-line process-
ing’ mode became available to enterprises. Terminals could be connected to main-
frame computers (Fig. 1.2). The first-generation terminal consisted of only two

Mainframe

Data

Monitor

Keyboard

1.
 R

eq
ue

st
2.

 R
es

po
ns

e

3. Display information

Monitor

Keyboard

Monitor Monitor

Keyboard Keyboard

Figure 1.2. Mainframe with dumb terminals.

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

4 1. Overview of Peer-to-Peer System

components—a keyboard and a screen. Its function was to allow end users to type
in data directly to the computer. After the computer processed the data, the result
was displayed on the screen of the terminal. In other words, the terminal’s func-
tions are input and output. It does not perform any calculations or formatting at
all. Many people refer to this type of terminal as ‘dumb terminals’.

On-line processing solves the problems of batch processing. End users can
type in their data as soon as possible and thus get the processing faster. How-
ever, in the mainframe approach almost everything is done by mainframe com-
puters. Processing in the mainframe quickly becomes a bottleneck in any in-
formation system. Enterprises were forced to keep pumping money into main-
frame upgrades in order to maintain efficiency under increased processing
demands.

In order to alleviate this problem, dumb terminals were replaced by ‘in-
telligent terminals’. Some simple tasks can be performed by intelligent ter-
minals. These tasks include some simple input-data validations and format-
ting of the display on the screen. Intelligent terminals are much more expen-
sive than dumb terminals, but they reduce some workload from the mainframe
computers.

Mainframe

Data

1.
 R

eq
ue

st
 d

at
a

2.
 S

en
d

da
ta

 to
 P

C

Laptop Computer
Tower PC

Workstation

Other applications
3. Calculation
4. Format / output
5. Display result

IBM Compatible

Working on
spreadsheet

Working on
Word processing

application

IBM Compatible

Data

Figure 1.3. PCs as intelligent terminals.

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

Client-Server 5

In early 1980s, PCs became available in the consumer markets. As demand for
PCs was very high, their prices dropped quickly due to mass productions. It was
more economic to replace intelligent terminals with PCs (Fig. 1.3). After installing
a special ‘emulation’ program, a PC can ‘pretend’ to be a terminal and communicate
with the mainframe. In addition to lower cost, PCs provide another advantage:
Users can use the PC as a stand-alone computer when it is not used as a terminal. It
is more cost-effective as the PC can also be used for word processing, spreadsheet
and other simple applications.

1.4 Client-Server

The Client-server architecture (Fig. 1.4) for computing systems was first pro-
posed as an alternative to the conventional mainframe systems approach for large

Internet

Client
computer

... ...Other serversWeb server

Web pages
and

programs

Email server

E-mail

Database
server

Database

Client
computer

Client
computer

Client
computer

Client
computer

Internal Network

Figure 1.4. Client-server model.

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

6 1. Overview of Peer-to-Peer System

enterprises. Client-server models shift the processing burden to the client com-
puter. A client is a computer that requests services from another computer (i.e.,
the server), while a server is a dedicated computer that provides services to clients
in these models. For example, a client may request a database server to retrieve
a record. After the server passes the record to the client, the client computer is
responsible for further processing (calculating, formatting output, preparation for
the graphical user interface, etc.). Through workload sharing, client–server sys-
tems can improve overall efficiency while reducing budget. Client-server models
started gaining wide acceptance in the late 1980s when companies began to seek
fresh competitive advantages in an ailing economy.

Both client-server and intelligent terminal–mainframe approaches reduce the
workloads of the central computers. However, they differ in several ways:

1. Client-server is more flexible as the client is a general-purpose computer.
Users can develop and install proper programs for their particular applications.
The client computer can take over as many workloads as possible from the
system.

2. Instead having only one or two mainframe, organizations usually have many
servers. Each server is dedicated to one particular function. For example,
database servers take care of database services, while e-mail servers take care of
collection and delivery of e-mail messages. This approach reduces the number
of clients which a particular server needs to support.

In other words, the client-server approach is a further improvement in spreading
the workloads among different computers. However, there are two major problems
in this approach:

1. We need to install application programs on each client computer. Some sys-
tems have several hundred or even a thousand clients. Installation alone is a
major task. From time to time, we also need to update the programs. It is a
daunting task to maintain a system with large number of clients and different
applications.

2. Usually one server supports many clients simultaneously so it is extremely busy.
On the other hand, client computers are idle most of the time. Corporations need
to upgrade their servers while they have unused computing power in the system.

1.5 Peer-to-Peer Systems

In the current global economic recession, companies are again searching for ways
to improve their processing power without further investment in new hardware and
software. Many client computers are idle most of the time, and they have unused
disk storage. The next logical step is to maximize the use of these client computers.
The P2P model is the solution to this problem.

In a P2P system, computers can act as both clients and servers. Their roles in any
task will be determined according to the requirements of the system at the time.

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

Peer-to-Peer Systems 7

For example, computer A sends a ‘file transfer’ request to computer B. During
the actual file-transfer process, computer B is the file server and computer A is
the client. At a later moment, computer B can send a request for file transfer to
computer A. The roles will reverse. This approach minimizes the workload on
servers and maximizes overall network performance.

Peer-to-peer computing allows users to make use of collective power in the
network. It helps organizations to tackle large computational jobs, which they could
not handle before. P2P implementation is also cost-effective for small companies
and even individuals. The benefits are lower costs and faster processing times for
everyone involved.

1.5.1 Definition of P2P Systems

Is there a universally accepted definition of P2P systems?
Unfortunately, the answer is no. Although there are many definitions (Oram,

2001; Leuf, 2002; Barkai, 2002; Moore and Hebeler, 2002), none of them can be
accepted by all practitioners. People also disagree on whether some applications
belong to P2P. A lack of agreement on a succinct definition may not be a bad thing
as P2P is still evolving. There are new applications and techniques, so it is good
to not have a narrow definition. However, there are some common characteristics
shared by most P2P systems:

� A ‘peer’ is a computer that can act as both server and/or client. Its role will be
determined by the requirements of the system at a particular time. In some P2P
systems, a peer can work as both server and client simultaneously.

� A P2P system should consist of at least two or more peers.
� Peers should be able to exchange resources directly between themselves. Such

resources include files, storages, information, central processing unit (CPU)
power and knowledge.

� Dedicated servers may or may not be present in a P2P system depending on the
nature of the applications. However, the roles of the most dedicated servers are
limited to enabling peers to discover each other. In other words, they are assum-
ing the role of brokers. P2P systems without dedicated servers are sometimes
described as ‘pure’ P2P systems.

� Peers can join and/or leave the system freely.
� Peers may belong to different owners. It is common for P2P systems to have

several millions of owners.

1.5.2 Benefits of P2P Systems

Most P2P systems provide some of the following benefits:

� Workload is spread to all peers. It is possible to have millions of computers in a
P2P network, which can deliver huge resources and power.

� It takes a shorter time to complete the task as peers can exchange resources
directly without a server, which is always the bottleneck in a network.

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

8 1. Overview of Peer-to-Peer System

� Many computers have unused resources. For example, many office computers
are not used at all from 5 pm to 9 am in the next morning. P2P computer can use
these resources and thus maximize the utilization.

� Corporations can save a lot of money through better utilization of existing facil-
ities.

� Centralized control and management are not required. Thus the cost of providing
these services can be saved.

� New peers can be added to a P2P easily. The ability to expand a network is also
called ‘scalability’.

� P2P network will still function when some of its peers are not working properly.
Thus it is more fault tolerant than other systems.

� Users can join or leave the system at any time they like. Thus users can maintain
the control of their resources.

1.5.3 Drawbacks of P2P Systems

Although P2P systems provide a lot of benefits, they are not a panacea for all
problems. A P2P network may not be the right tool for some specific tasks. We
list the possible drawbacks as follows:

� The peer will be more vulnerable to hackers’ attacks.
� It is difficult to enforce standards in P2P systems.
� For some specific tasks, the workload cannot be shared among the peers.
� A peer can leave the system according to its owner’s discretion. A P2P network

cannot guarantee that a particular resource will be available all the time. For
example, the owner may shut down his computer or delete a file. It is difficult to
predict the overall performance of a system.

� It is difficult to generate cash for any participants in the systems.
� It is difficult to prevent illegal uploading and downloading of copyrighted ma-

terials.
� A popular P2P system can generate enormous amount of network traffic. For

example, the Napster system’s overwhelming access slowed down the networks
of many universities. As a result, some universities did not allow their students
to access Napster inside the campus.

Although P2P has become a buzzword lately, there are still problems in devel-
oping large-scale P2P projects. We will look at some high-profile P2P networks
as examples and present our solutions in the remaining chapters of this book.

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

2
File-Sharing Peer-to-Peer System

2.1 Introduction

Although the focus of this book is on CPU power sharing, it is worthwhile to
look at the operations of file-sharing P2P systems. It will help us to identify the
common features and differences of various types of P2P systems (Oram, 2001;
Leuf, 2002; Barkai, 2002; Moore and Hebeler, 2002). We will present several
high-profile file-sharing P2P systems in this chapter.

2.2 Famous Napster Model

Shawn Fanning, an 18-year-old student, created Napster in 1999. He was frustrated
with the difficulties in finding digital music files on the Web, so he developed his
own software.

Napster is a high-profile P2P network, which gives its members the revolutionary
ability to connect directly to other members’ computers and search their hard drives
for digital music files to share and trade.

The operations of Napster are described in Fig. 2.1. Members download a soft-
ware package from Napster and install it on their computers. The Napster cen-
tral computer maintains directories of music files of members who are currently
connected to the network. These directories are automatically updated when a
member logs on or off the network. Whenever a member submits a request to
search for a file, the central computer provides information to the requesting mem-
ber. The requesting member can then establish a connection directly with another
member’s computer containing that particular file. The download of the target
file takes place directly between the members’ computers, bypassing the central
computer.

The power of Napster and similar applications is that they allow the sharing
of widely dispersed information stores without the need for a central file server.
Over 36 million people joined the Napster community, and it rapidly accelerated
the development and implementation of other P2P models. The limitation is that
it can only share music files—participants cannot share other resources.

9

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

10 2. File-Sharing P2P System

Napster's
computer

Participant's
computer

Participant's
computer

Participant's
computer

Participant's
computer

1. Send local files
information to Napster

1
.
S

e
n

d
 f
ile

s
in

fo
rm

a
tio

n

to
 N

a
p

st
e
r

1. Send files information
to Napster

1
.
S

e
n
d
 f

ile
s

in
fo

rm
a
tio

n

to
 N

a
p
st

e
r

2. Send a request to
search a target file

3. Address of participant
with the target file

Index of MP3
files and

addresses of
participants

4. Send a request to

transfer the target file

5. Transfer the target file

Local MP3
files

Local MP3
files

Local MP3
files

Local MP3
files

Figure 2.1. Napster model.

Napster has also faced considerable legal challenges, unrelated to its technolog-
ical model, from music-publishing companies who objected to the free copying
of copyrighted material. The Recording Industry Association of America (RIAA),
a trade group that represents U.S. music publishers, filed its first lawsuit against
Napster in December 1999. The court ruled in favour of RIAA. Napster was or-
dered to block access to copyrighted MP3 files on its system. The appeal court
also upheld the ruling. In response to this ruling, Napster deployed various filters
to reduce the number of files available for exchange. However, that was not good
enough to satisfy Judge Patel. In July 2001, she ordered to close down Napster
due to the inefficiency of its filtering.

2.3 Gnutella

Napster was ordered to shut down because it maintained a central directory for
its members. Some new file-sharing P2P systems surfaced to replace Napster

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

Gnutella 11

Figure 2.2. Structure of Gnutella.

in the wake of its abeyance. These P2P systems can bypass the legal prob-
lems as they do not hold a central directory. They do not even need a central
server or any company to run the system. Thus, it is impossible to kill the net-
work. These new P2P systems include Gnutella, KaZaA, Direct Connect, etc. As
Gnutella is one of most prominent networks, its operations will be presented in this
section.

The idea of Gnutella is quite simple and similar to the ‘search strategies’ em-
ployed by humans. If you want to get a particular file, you can ask one of your
friends nearby. If he/she does not have the file, he/she can ask his/her friends. If
everyone is eager to help, this request will be conveyed from one person to an-
other until it reaches someone who has the file. This piece of information will be
routed to you according to the original path. The network structure of Gnutella is
described in Fig. 2.2.

Computers in the network have different connection speeds. Some computers
have high-speed lines such as T3, while others have slow 56K modem connections.
A high-speed computer will connect to many computers, while the low-speed
computer will connect to only a few computers. Over the course of time, the
network will have a high-speed computer in the core.

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

12 2. File-Sharing P2P System

Gnutella will stop the search according to time-to-live number. The default value
of this number is 7. Your request will be conveyed from one computer to another
seven times. As each computer in this chain can send the request to multiple
computers directly connected to it and this number is counted as 1, the request
could reach a large number of computers.

Users need to install a Gnutella client in their computers before they can join the
network. Many different packages are available from the Internet. Popular client
packages include the followings:

Windows platform
BearShare: http://www.bearshare.com/
Gnucleus: http://gnucleus.sourceforge.net
LimeWire: http://www.limewire.com
Phex: http://phex.sourceforge.net/
Swapper http://www.revolutionarystuff.com/swapper
XoloX: http://www.xolox.nl/

Linux/Unix platform
Gtk-Gnutella: http://gtk-gnutella.sourceforge.net/
LimeWire: http://phex.sourceforge.net/
Mutella: http://mutella.sourceforge.net/
Qtella: http://www.qtella.net/

Macintosh
LimeWire: http://www.limewire.com/
Mactella: http://www.cxc.com
Phex: http://phex.sourceforge.net/
Mactella: http://www.tucows.com/preview/206631
BearShare: http://www.bearshare.com/

Most of the clients are easy to use and provide a lot of functions. Figure 2.3 shows
the screen of a popular client—LimeWire. The user does not need to log into the
system as there is no central server. A few clicks on the menu of the program will
connect the user’s computer to the Gnutella network. Alternatively, user can select
the option so that the client will connect to the network automatically when the
program starts up. The user can also specify that his/her computer automatically
run LimeWire when the computer starts. This will allow the user’s computer to
provide maximum services to the network.

After connection, the client allows users to search for a file by part of its name.
For example, typing ‘P2P’ into user can also focus the search by specifying the
type of files. There are five different types in LimeWire:

� image
� video
� documents
� programs
� audio

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

BitTorrent 13

Figure 2.3. LimeWire client.

Sharing files is also simple. Users specify the folders they want to share with
others. They can then copy or move the files to these folders. LimeWire allows ad-
vanced users to control the percentage of bandwidth that can be used for uploading.

2.4 BitTorrent

An analysis by researchers at the Xerox Palo Alto Research Center indicated that
50% of all files for sharing were stored on only 1% of the peers. About 70% of
all Gnutella users do not share any files with others. In other word, all they do is
‘download’. They are referred to as ‘freeloaders’ or ‘free riders’.

If a network has a large proportion of freeloaders, it will defeat the objective to
share workload in a P2P network. When a peer shares a popular file with others in
a P2P network, it will attract a large volume of traffic. This successful peer needs
to pay more bandwidth costs for more clients as in Fig. 2.4.

BitTorrent (Cohen, 2003) is a new protocol to solve this problem. The idea
of this protocol is simple. The peer who plays the role of server breaks down a

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

14 2. File-Sharing P2P System

Central
computer

PC

PC

PC

PC

PC

PC

PC

Figure 2.4. Traditional downloading.

file into many sub-files. If this file is requested by several clients simultaneously,
each client will get a different sub-file. Once a client gets a complete sub-file,
it will allow other clients to download this sub-file from this computer while it
continues to download the second sub-file from the original server (Fig. 2.5). In
other words, the client will assume the role of both client and server simultaneously
after it gets the first sub-file. This process will continue until the download is
complete.

The BitTorrent protocol is especially good for large files as the downloading
process is longer. That means there are more servers in a particular period. More
participants will not downgrade the performance of the whole network as the
workloads are more or less evenly distributed. Indeed, the performance will be
improved because there is no way to turn off the upload function of a BitTorrent
program when a computer is downloading.

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

BitTorrent 15

Server

PC

PC

PC

PC

PC

PC

Figure 2.5. Cooperation of file sharing.

A schematic diagram is presented in Fig. 2.6. The server computer has four
sub-files (i.e., sub-1, 2, 3 and 4) in our example. Each client gets only one sub-file
from the server at one time. As described in Fig. 2.6, client 1 gets these four files
from different computers. The arrival of each sub-file might not follow the original
order. The sequence of arrival in this case is 1-4-2-3 instead of 1-2-3-4. The actual
sequence depends on the actual number of participants and sub-files in network.
The algorithm of BitTorrent will try to maximize the number of sub-files available
for downloading in any particular period.

In order to download a file, a user goes through the following steps:

� Install BitTorrent program.
� Surf the Web.
� Click the file on the server.

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

16 2. File-Sharing P2P System

Sub-file 3 Sub-file1

Sub-file 2

Sub-file 3

Sub-file1

Sub-file3

Client
1

Client
3

Client
2

Server
Client

4

1. Sub-file 1

2a. Sub-file 4

2a. Sub-file 4

3a. Sub-file 4

3b. Sub-file 2

4a. Sub-file 1

4b. Sub-file 3

Figure 2.6. Example of downloading a file with four sub-files.

� Select the location to save the file.
� Wait for the completion of the process.
� Instruct the program to exit (the uploading process will continue until the user

carry out this step).

This method enables the distribution of large files, such as movie files, to a
large number of computers within a short time. There are a lot of applications for
this technology. For example, some portals provided live video to their customers
during the World Cup Final (Soccer). However, they were not able to support the
large demand and many requests for connection were rejected. This protocol can
solve this type of problems easily.

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

Legal Challenges 17

2.5 Common Features

Although the operations of the aforementioned three P2P systems are different,
they provide the following common features:

� They enable users to join and leave the system.
� They allow users to discover each other.
� They allow users to search files which reside on other computers.
� They allow two computers to exchange files directly.

2.6 Legal Challenges

Since a large number of users illegally share copyrighted music, some people
might believe that P2P technology is only a tool for piracy. This bad image might
scare off some users from using PP network. However, there are still a substantial
number of legitimate users who are constantly sharing different kinds of files such
as photos, documents, programs, etc.

It is interesting to look at the history. In mid-1980s, the movie business be-
lieved that the new technology—the VHS recorder—posed a serious threat to their
survival. This new technology enabled users to copy movies without the prior per-
mission from studios. They wanted to ban this technology, and the legal battle was
fought all the way to the Supreme Court. The court ruled that although some users
could use VCR recorder to infringe the copyrights, there were substantial number
of legitimate users. Thus VCR should not be banned. Indeed, this ruling is good
for both consumers and the movie industry as rental of VCR movies eventually
brought huge profits to studios.

History repeats itself. Recently, in addition to suing users for downloading and
uploading copyrighted songs to the P2P network, the music industry has also
brought the P2P software developers into the courtroom. Movie and music stu-
dios asked the courts to hold P2P developers liable for infringement of copyright
because people use their products to share files illegally. These kinds of lawsuits
create uncertainties and threaten some potential investors in P2P network devel-
opment.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 25, 2006 20:54

3
The Need for More Powerful
Computers

3.1 Introduction

Dramatic increases in computer speed have been achieved over the past 40 years,
but this trend will come to an end with traditional electronic technologies. The
limiting factors are the speed at which information can travel and the dis-
tance it has to travel within a computer. The former is limited by the speed of
light.

For the latter part, the technology used to reduce the size and distance between
components is approaching the theoretical limit. Even if we can make the distance
shorter than in the present technology, another problem will arise. Simultaneous
electronic signal transmission between different pairs of components will start to
interfere. In other words, any gains in building faster electronic components will
be offset by other technical difficulties.

On the other hand, computer applications are becoming more complex and they
demand more computer power. A few examples of current applications that need
extremely powerful computers are

� quantum chemistry,
� molecular modelling,
� nanoelectronics,
� computational astrophysics,
� oil explorations,
� genome sequencing and cell modelling,
� drug discoveries,
� modelling of human organs,
� weather prediction and climate change modelling and
� financial market modelling.

One way to get around this problem is to use computers having more than one
processor. Such machines are commonly known as parallel computers. In the ideal
case, a time-consuming job can be equally divided into many sub-jobs and one
processor can then handle each sub-job. These processors can thus cooperate with

18

P1: OTE/SPH P2: OTE

SVNY285-Loo October 25, 2006 20:54

Problems of Parallel Computers 19

each other to solve a single problem. If the sub-jobs can be executed independently,
then the execution time of the single job will be reduced by a factor of p, where
p is the number of processors in the parallel computer. Note that this is the ideal
case; other cases will be discussed later in this chapter.

3.2 Problems of Parallel Computers

Although multiprocessor computers had been developed in the past 30 years, more
than 90% of the computers sold today are still single processors. Many people view
parallel computing as a rare and exotic sub-area of computing; it is interesting but of
little relevance to average person (Foster, 1994). The reasons for this phenomenon
are simple:

� Parallel computers are still so expensive that many organizations cannot afford
to use them.

� It is relatively difficult to find good programmers with parallel computing training
and experience. Many universities cannot afford to buy parallel computers for
their parallel computing courses.

� Many parallel computers are dedicated to special applications and cannot be used
for other general applications. Thus, it is difficult to maximize the utilization of
these computers.

Despite these difficulties, parallel processing is still an area of growing inter-
est due to the enormous processing power it offers in solving a lot of compu-
tational intensive applications such as aerodynamic simulations, bioinformatics
image processing, etc. The most important factor among these applications is a
‘need of speed’ in terms of completion requirements such as calculating a one-week
weather forecast in less than one-week. There are two basic models of parallel com-
puter systems, namely processor-to-memory model and processor-to-processor
model.

A multiprocessor system consists of p processors plus interconnections for pass-
ing data and control information among the computers. Up to p different instruction
streams can be active concurrently. The challenge is to put the p processors to work
on different parts of a computation simultaneously so that the computation is done
at high speed.

Every supercomputer and mainframe company in the world has parallel ma-
chines, or plans for parallel machines or an alliance that would lead to the produc-
tion of parallel machines.

On the other hand, multiprocessor file servers/web servers are common. There
is increasing interest in using distributed heterogeneous networks instead of truly
parallel machines using various technologies. The latest development is to use P2P
systems with millions computers to tackle a single problem. Let us look at two
high-profile P2P networks in the next section.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 25, 2006 20:54

20 3. The Need for More Powerful Computers

3.3 CPU Power Sharing Examples

There are many CPU power–sharing P2P systems (Oram, 2001; Leuf, 2002; Barkai,
2002; Moore and Hebeler, 2002). Two high-profile examples are selected and
presented in the following sections.

3.3.1 SETI@home

Giuspeppe Cocconi and Phil Morrison of Cornell University published an article
‘Searching for Interstellar Communications’ in the British journal Nature in 1959.
In that article, they suggested listening to radio signals from space. Collecting
and identifying intelligent signals would provide strong evidence of advanced
technologies in other planets. Thus, it can be used to prove the existence of life in the
stars. Their method leads to a logical and scientific approach for an interesting topic.

Inspired by this suggestion, Frank Drake started his search for life from outer
space several months later. He used the equipments in National Radio Astronomy
Observatory in West Virginia, United States, to study the signals from two stars—
Epsilon Eridani and Tau Ceti. Drake could not find any useful result in his 3-month
experiment. However, the discussion of this experiment in a 1961-conference stim-
ulated more interests in scientific community.

Drake’s experiment spawned many ‘search for extraterrestrial intelligence’
(SETI) projects. These projects share a single problem. They do not have the
computing power to analyse all collected data. Researchers are forced to select
only strong signals for analysis, although weaker signals should also be good
candidates for the studies.

David Gedye, a computer scientist in Seatle, came up with the idea to use P2P
systems to solve this problem in late 1994. He discussed his idea with his for-
mer professor, David Anderson, at the University of California. The SETI@home
was officially established in 1999. The project was funded by SETI Institute, the
Plantary Society, University of California and Sun Microsystems. Other sponsors
include Fujifilm Computer Products, Quantum Corp., Informix, etc. About 40 Gb
of data is collected daily by the telescope of this project.

The operation (Fig. 3.1) of the SETI@home project is quite simple. The owner of
each personal computer downloads a small program from the server. After instal-
lation of this program, the personal computer will communicate with SETI@home
computer. A work unit will be downloaded to the peer. The analysis job will be
conducted by the peer, and results will be sent back to the organiser’s computer
through the Internet. This P2P system includes several million computers and has
generated over 1 million years of computer time.

3.3.2 Anti-Cancer Project

On April 3, 2001 Intel Corporation, the University of Oxford, the National Foun-
dation for Cancer Research and United Devices, Inc. announced a joint P2P

P1: OTE/SPH P2: OTE

SVNY285-Loo October 25, 2006 20:54

CPU Power Sharing Examples 21

Figure 3.1. Operation of the SETI@home project.

computing project aimed at combating cancer by linking millions of PCs in a
vast P2P network. While the computing power of each computer in the net-
work is relatively small, linking them in this way creates a resource that is far
more powerful than any single supercomputer. This project is quite simple to
implement.

Each computer owner downloads a small program to his/her computer via an
Internet connection. The program works as a screen saver (Fig. 3.2) and runs only
when the computer is idle. The objective of the program is to discover drugs for
the treatment of cancer. It will test chemicals by ‘bending and flexing’ each of
hundreds of millions of molecular structures to determine if they interact with
proteins involved in cancer.

When a given molecular structure triggers an interaction with target protein,
it is referred to as a ‘hit’. Hits have different levels of strength, but all of them
are potential candidates for an effective treatment. All hits, together with their
strengths, are recorded and transmitted back to the coordinator through Internet.
In the final phase of the project, the hits will be synthesized and tested in the
laboratory for their abilities to cure cancer. The most promising drugs will go
through a pharmaceutical process in verifying their anti-cancer abilities.

This project is succeeding in the sense that it has attracted about 3 millions of
PC owners to participate and a total donation of 410,000 years of CPU time as of

P1: OTE/SPH P2: OTE

SVNY285-Loo October 25, 2006 20:54

22 3. The Need for More Powerful Computers

Figure 3.2. Screensaver of the anti-cancer project.

April 2005. About 3 billion small molecules have so far been screened against 16
protein targets.

3.4 Need for Parallel Algorithms

Using multiple computers alone cannot solve our problems. As is in the case of
single computer, efficient parallel algorithms are required to realize the benefits of
using multiple computers in a P2P network. As mentioned earlier, computers need
to cooperate to complete a single job and there will be additional overheads in the
cooperation process. Indeed, it is rather similar to human society as cooperation
is quite common in real life.

We can look at a simple numerical example. A person is given 100 million
numbers and is required to calculate the sum of them. If he/she can perform one
‘add’ operation in 1 s, then he will be able to add 28,800 numbers in a day. He
would thus require about 3570 days to complete the job.

If we want to complete this task of calculation in a shorter period, a simple
approach is to employ more people and divide the numbers into many parts. One
worker is then assigned to each part and then all of them can work independently
and simultaneously. If one person can calculate the sum in 3570 days, then theoret-
ically 100 persons will be able to complete it in approximately 35.7 days. However,
this argument will break down quickly if we increase the number of people to a

P1: OTE/SPH P2: OTE

SVNY285-Loo October 25, 2006 20:54

Metrics in Parallel Systems 23

very large number. If we increase the number of people to 1 million, then common
sense tells us that the sum cannot be obtained within 100 s although each one of
them can complete 100 ‘add’ operations in 100 s.

Looking more deeply at this example reveals that people involved in the adding
process need to communicate with each other and this kind of communication
might be time consuming. Some processes cannot start until other processes are
finished. The output of one process will be used for the input to another process.
Some person might be idle as they are waiting for other people to finish their
job before they can begin. Management is required so that each process will be
delegated to the right person, and a schedule is required.

In the aforementioned example, each person is assigned 100 numbers and only
gets the sub-total of these 100 numbers after all finish their own process. There
are one million sub-totals at the end of this phase. We still need to add up these
sub-totals to get the sum, and it is not a simple task. The people who add the
sub-totals must wait for them to arrive. Careful planning is required for such a
job with its huge amount of data and processes, otherwise the job will never be
completed.

Indeed, a similar case happened in 1880, when the United States conducted a
census of all its citizens. Although the necessary information had been collected
and simple calculation was involved, they were not able to tabulate the statistics
in that year due to the large volume of data. The problem was not solved until
Herman Hollerith, an employee of the Census Bureau, devised a tabulating and
sorting machine to handle the problem.

From this ‘adding’ example, we can see that the procedure to complete a job with
one person will be quite different to the procedure with many people. An efficient
procedure involving many people will be more complex than the procedure for one
person. We need to take care of the problems of duty allocation, synchronization,
resource sharing, scheduling, etc.

Similarly, a serial algorithm cannot usually be used efficiently in a parallel
computer. Parallel algorithms are needed, which take care of the problems of
synchronization, resource sharing and scheduling if they are to be efficient. For
any given problem, the optimum parallel algorithm may be radically different
from the optimum serial algorithm. The design goal of any parallel algorithm
is to divide the task into independent sub-tasks that require little synchroniza-
tion and communication. Efficient parallel algorithms result from the efficient use
of process resources and the maximization of the computation–communication
ratio.

3.5 Metrics in Parallel Systems

Efficient parallel algorithms are required to realise the benefits of the parallel com-
puters. This section will present the major metrics used to measure the efficiency
of parallel systems.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 25, 2006 20:54

24 3. The Need for More Powerful Computers

3.5.1 Speedup

The strongest argument against the future of parallel computing is Amdahl’s
Law (Quinn, 1994), which indicates that a small number of sequential oper-
ations in a parallel algorithm can significantly limit the speedup of the whole
process. The term ‘speedup’ is defined as the ratio of the time required to com-
plete the process with the fastest serial algorithm using one processor to the
time required to complete the same process with the parallel algorithm using p
processors.

If f is the fraction of operations in a process which must be executed in a
sequential way, then the maximum speedup which can be achieved by a computer
with p processors (Amdahl, 1967) will be:

speedup <= 1

f + (1 − f)/p
(3.1)

This effect is illustrated in Figs. 3.3 and 3.4. Increasing the size of the sequential
part of the problem quickly causes the speedup to saturate. Even when only 5% of
the problem is executed sequentially, speedup is limited to less than one-third of
what could be achieved in principle. Thus research is being focused on building
efficient algorithms with few (or almost no) sequential operations, thus minimizing
the idle time of each processor.

3.5.2 Efficiency

In general, only ideal systems can achieve a speedup of p for a p-processor system.
This implies that the fraction of operation, f , is 0. In practice, the ideal case
cannot be achieved as processors cannot devote all of their time to computing the

0

2

4

6

8

10

12

2 3 4 5 6 7 8 9 10

Number of processors

S
p
e
e
d
u
p

f=0 Ideal case

f=0.01

f=0.03

f=0.05

f=0.08

f=0.1

Figure 3.3. Speedup vs. number of processors/computers with different f values (2 ≤
p ≤ 10).

P1: OTE/SPH P2: OTE

SVNY285-Loo October 25, 2006 20:54

Metrics in Parallel Systems 25

0

20

40

60

80

100

120

20 30 40 50 60 70 80 90 100

Number of processors

S
p

e
e

d
u

p

f=0 Ideal case

f=0.01

f=0.03

f=0.05

f=0.08

f=0.1

Figure 3.4. Speedup vs. number of processors/computers with different f values (10 ≤
p ≤ 100).

problem. There are overheads embedded such as inter-processor communication,
synchronization, etc.

Efficiency (E) is then proposed as a measure of the fraction of time for which
processors are usefully employed. In the ideal case, speedup is p when the efficiency
is 1. In practice, speedup usually is less than p and efficiency is a value between 0
and 1. If E is the efficiency and p is the number of processors, they are related by
the following formula:

E = speedup/p (3.2)

where p is the number of processors per computers in the system.
By combining Eqs. (3.1) and (3.2), we have:

E ≤
1

f + (1 − f)/p
p

≤ 1

f p + (1 − f)

≤ 1

f (p − 1) + 1
(3.3)

Efficiency is again a function of f . It decreases quickly when f increases. The
effect is demonstrated in Figs. 3.5 and 3.6.

3.5.3 Scalability

As discussed in Section 3.5.1, the speedup usually does not increase linearly when
the number of processors increases. A constant speedup tends to be achieved as
overheads due to communication, synchronization, etc., increase. On the other
hand, an increase in the problem size yields a higher speedup and efficiency for

P1: OTE/SPH P2: OTE

SVNY285-Loo October 25, 2006 20:54

26 3. The Need for More Powerful Computers

0.00

0.20

0.40

0.60

0.80

1.00

1.20

2 3 4 5 6 7 8 9 10 11

Number of processors

E
ff
ic

ie
n
cy

f=0 (Ideal case)

f=0.01

f=0.03

f=0.05

f=0.08

f=0.10

Figure 3.5. Efficiency vs. number of processors/computers with different f values (2 ≤
p ≤ 10).

the same number of processors. These two phenomena are common for a lot of
parallel systems.

An ideal scalable parallel system maintains efficiency as the number of processor
increases under the condition that the problem size is also increased. Such parallel
systems are called scalable parallel systems.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

20 30 40 50 60 70 80 90 100 110

Number of processors

E
ff

ic
ie

nc
y

f=0 (Ideal case)

f=0.01

f=0.03

f=0.05

f=0.10

Figure 3.6. Efficiency vs. number of processors/computers with different f values (20 ≤
p ≤ 100).

P1: OTE/SPH P2: OTE

SVNY285-Loo October 25, 2006 20:54

Summary 27

3.6 Summary

A parallel system consists of a parallel algorithm and the parallel architectures
on which it is implemented. Its performance depends on a design that balances
hardware and software. The cost-effectiveness of a network depends on a large
number of factors discussed in this chapter.

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

4
Problems and Solutions

4.1 Problems

The successful operation of the anti-cancer project is discussed in Charter 3. How-
ever, it is extremely difficult for other organizations or individuals to develop
similar P2P projects according to the method used in this project. The weaknesses
of this method are discussed in the following sections.

4.1.1 Security

Participants (individual PC owners) need to completely trust the research organi-
zation before they download the programs. Allowing P2P programs to run on your
own computer greatly increases vulnerability to security breaches. Such breaches
could include the following:

� Deleting files or directories on your computer
� Reading from or writing to the files on your computer
� Creating new files or directories on your computer
� Execute programs or commands such as deleting files, making long distance

calls with your modem and telephone line, etc.
� Connecting to other computers and perform illegal operations such as hacking

other computers

It is very difficult to secure P2P applications against these misuses, especially
where participating computers use operating systems like Microsoft Windows.
Any organization less famous than Intel or the University of Oxford would have
problems assuring participants of the safety of their network.

4.1.2 Motivation

Participants do not get any benefits from participating in this type of project.
They donate computer time only because they believe in the project’s objective.
Although it may well benefit humanity as a whole, it will still fail to attract the
more sceptical computer owners.

28

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

Desirable Characteristics of P2P Systems 29

Many public or commercial organizations have thousands of PCs lying idle after
the 9 am to 5 pm working hours. They are ideal ‘donors’ but they do not join the
projects. Why not?

First of all, the research result will be the sole and exclusive property of Oxford
University. Other academic institutions might not like this idea. Although the other
two project partners in the cancer project, Intel and United Devices, Inc., do not in
fact receive any direct benefit from this project, many people assume that they must
benefit from it—even if only in public relation or marketing terms. The thought
bothers many organizations and deters them from participating. For other projects
with explicit commercial objectives, it may be almost impossible to attract donors.

4.1.3 Performance Efficiency

In the aforementioned project, each participant needs to download a program and
then install the program on his/her computer. If the participants want to donate
processing time to a new project, they will need to repeat this process. Even if the
number of participants was limited to a mere 1000, the process of distributing the
software to all the participating machines would take a long time to complete. It is
also extremely difficult to maintain the system and perform tasks like upgrading the
programs on the participants’ computers. What is needed is an automatic method
of storing and updating the programs on remote computers.

4.1.4 Compatibility

The software used in the cancer project can only be executed on PCs. There
are a large number of workstations which use Unix or other operating sys-
tems, many of which are enterprise-based and therefore unused after office
hours. These machines are usually more powerful than PCs. It is a pity that
workstations cannot join this project due to compatibility problems. Another
large-scale P2P project,SETI@home from the University of California (see
http://setiathome.berkeley.edu for more information), which searches for extrater-
restrial intelligence, uses different version of programs for different platforms to
solve this problem. Participants can download their versions according to different
operating systems such as MacOS, Unix, etc. This approach makes more computer
power available to the researchers but increases the cost of maintenance as many
versions need to be kept and updated.

4.2 Desirable Characteristics of P2P Systems

In a P2P architecture, participating computers communicate directly among them-
selves and can act as both clients and servers. Their roles will be determined
according to what is most efficient for the network at the time. In order to make the
power of large P2P system accessible to small organizations or even individuals,
the system must have the following characteristics:

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

30 4. Problems and Solutions

1. We need the ability to initiate a program on a remote server from a client
computer. A software package to achieve this must be installed on both servers
and clients. It must be inexpensive (or even free) if we want to attract individuals
to join the projects. Although there are a number of P2P products on the market,
all are very expensive.

2. The program must be easy to use.
3. It must be safe to use. The user should not have to examine every program from

other users, which will be executed on his computer.
4. It must require a minimum amount of user intervention. Effort from the user

for first-time installation is acceptable, but the maintenance work should be
reduced to a minimum—the ideal would be no maintenance.

5. It should not rely on a software product from a single vendor. If there is any
existing product that can achieve the task, we should not reinvent the wheel.
We should be able to simply extend the features of these products. A model
based on existing web server technologies can be used for P2P products; we
will present this model in next section.

6. Client computers should be able to reach a large number of power-server com-
puters within a short period. We define servers in the sense that these computers
serve CPU power to other users.

4.3 Enabling Technologies

All of the earlier requirements can be met. Some problems can be solved with the
latest enabling software while others need to be handled by building infrastructures.
We will discuss the technologies first and present the infrastructure solutions in a
later chapter.

4.3.1 Java Language

In many P2P systems, we will have heterogeneous systems with different oper-
ating systems and hardware platforms. Portability of programs is of the utmost
importance in such structures. Java is the only language which delivers the ‘write
once, run anywhere’ promise. More P2P programs will be written in Java in the
future.

4.3.2 Security Managers

Java is designed with security in mind and a ‘security manager’ is one of its special
features. A user can specify security policy in the security manager. By identify-
ing programs to run under the security manager, we can control the programs’
behaviour according to our pre-defined security policy.

4.3.3 Web Servers and Servlets

When we surf the Internet, we select a desired web page via an embedded ‘link’
and our browser (such as Internet Explorer or Netscape) sends a message to the

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

Overview of Our Solution 31

Web client computer
(with web browser)

Web server computer
(a CGI program or

servlet processes the
user's request and

assembles a web page)

HTTP message

Servlets

Assembled web page

CGI program

Figure 4.1. Process user’s request with CGI or servlets.

remote web server. The message is encoded in a format referred to as hypertext
transport protocol (HTTP). The web server then locates the appropriate web page
and sends it back to the browser. This simple model is sufficient as long as the user
only wants to view static web pages.

On the other hand, some applications require more processing and a ‘dynamic’
web page is required. In a typical example, the web server needs to access several
records and do some calculations before it can assemble a dynamic web page.
In this case, the HTTP message will invoke a program on the web server as in
Fig. 4.1. Such programs on the server side are referred as Common Gateway
Interface (CGI) programs or servlets. CGI programs are programs written in any
language except java, while servlets are simple small java programs. Servlets are
better than CGI programs as they are Java programs and have no compatibility or
security problems.

4.4 Overview of Our Solution

This ability to invoke a program on a web server can be used in P2P applications. A
‘power server’ model using server and servlet is shown in Fig. 4.2. In this model, we
introduce a new concept: a single ‘client’ computer can use the computing power
of many ‘servers’ simultaneously. It is different from conventional networks which
consist of many ‘clients’ working with one ‘server’. In traditional client–server
systems, servers usually serve data to the client. However, in this model we define
power servers in the sense that these computers serve CPU power to other users.
Every computer in the system will become a power server by installing ‘web
server’ package and a few Java programs.

One computer acts as a client. A Java application program is executed on the
client. It divides a single, computation-intensive task into many small sub-tasks
and queues them in the system. The application program invokes a servlet on the
server and transfers a small part of the task to the servlet. The servlet can then
complete the task on the server. The computed results are sent to the client. A
performance test of this model is available in Loo et al., 2000.

The behaviour of web servers is well defined. Many good server-software pack-
ages are available, and many of them are freeware/shareware (e.g., vqserver). These

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

32 4. Problems and Solutions

Client computer

Task

queue

Internet/Intranet

H
T

T
P

 m
e

ssa
g

e

a
n

d
 su

b
-ta

sk

.........
Server computer i

Server computer N

Result Result
Result

Sub-task result
HTTP

message

Java application program

Server computer 1

Server
program

Servlet

Sub-
task

Server
program

Servlet

Sub-
task

Servlet
Servlet

Server
program

Servlet

Sub-
task

HTTP message and
sub-task

Servlet

H
T

T
P

 m
e
ssa

g
e
 a

n
d

su
b
-ta

sk

Load
servlet

Load
servlet

Load
servlet

Figure 4.2. Power server model.

packages are quite small and easy to install. Any computer user should be able to
install a web server package and allow their computer to act as a power server.

We need to update the server machines one by one in the power server model. If
we have a large number of servers, this maintenance is very time consuming. This
drawback can be overcome by automation. Because most web servers have upload
functions, the maintenance job can be alleviated by using this function. This can
be achieved by uploading the new version of the servlets and is automated by use
of a special program on the client computer. The maintenance job can be further
reduced if all participants are within one organization and their computers are
connected in a local area network (LAN). Only one copy of the web server and
servlet is installed on the network drive. Every computer invokes the web server
and servlet using the single version on the network drive, and thus the maintenance
job is streamlined.

4.5 Comparison

In addition to overcoming all the problems of the anti-cancer project, the following
are the power server model’s advantages:

� Participants can initiate new projects any time without upgrading or adding
software to the power servers.

P1: OTE/SPH P2: OTE/SPH QC: FCH/UKS T1: FCH

SVNY285-Loo October 18, 2006 7:7

Impact 33

Table 4.1. Comparison of P2P models.
Cancer research

Characteristics Napster project Power server model

Resources shared MP3 music files CPU computing power CPU computing power
Those who will

benefit
All participants Organizer only All participants

Projects supported Single project (only
for MP3 file
sharing)

Single project (only for
drug development)

Multiple projects

Abilities for
participants to
start a new
project

No No Yes

Role of
participant’s
computer

Client and server Server only Client and server

Type of platforms
support

Microsoft Windows,
Linux

Microsoft Windows
only

All platforms

Security Participants need to
entirely trust the
organizer’s
software

Participants need to
entirely trust the
organizer’s software

Security is enforced by
the ‘security manager’
of the participant’s
computer

� Each computer owner is sure that his/her computer is safe as it is safeguarded
by his/her own version of the ‘security manager’.

The limitation of this model is that the programs must be written in Java as it is
the only language which can run across all platforms.

The differences between all three models are summarized in Table 4.1.

4.6 Impact

Many enterprises are waiting for vendors to come up with software products that
allow them to share CPU power with each other. Existing web server technologies
can be easily extended using the model described in this chapter. In addition to save
the expenditure on expensive dedicated P2P software packages, P2P systems using
web server technologies will be easier to maintain as the features of web servers are
already well understood. The web server will become a power server by adding a
few java programs. We have presented an inexpensive way to dramatically increase
computing power. Peer-to-peer networks for power exchange will be popular in the
future. Many organizations and individuals will discover that they can do things
in different, more powerful ways as they obtain increased access to computing
power.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

5
Web Server and Related Technologies

5.1 Introduction

This chapter introduces the basic concepts of web servers and servlets as we do not
assume readers to have prior knowledge in these areas. Five power server models
will be presented in Chapter 9 to 13. As three of them are run under a web server,
readers need to have some knowledge of web servers and servlets. After reading
this chapter, readers will be able to install a web server.

However, this is not a manual for server or servlet writing. Many features of
servlets will not be covered and only those that are related to our models will be
discussed. Readers interested in finding out more advanced features should refer
to other books on servers and/or servlets. Equally, if you are familiar with servers
and servlets, you can skip to Chapter 9.

5.2 Web Servers

When we surf the Internet, we select a desired web page via an embedded ‘link’
and our browser (such as, Internet Explorer or Netscape) sends a message to the
remote web server. The message is encoded in a format referred to as HTTP. The
web server then locates the appropriate web page and sends it back to the browser
as in Fig. 5.1. This simple model is sufficient as long as the user only wants to
view static web pages.

On the other hand, some applications require more processing and a ‘dynamic’
web page is required. In a typical example, the web server needs to access several
records and do some calculations before it can assemble a dynamic web page. In
this case, the HTTP message will invoke a program on the web server as in Fig.
5.2. Such programs on the server side are referred as CGI programs or servlets.
CGI programs are programs written in any language except java, while servlets
are simple small java programs. Servlets are better than CGI programs as they are
Java programs and have no compatibility or security problems. These differences
will be discussed in Chapter 6.

34

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

Apache Tomcat 35

Figure 5.1. Web server with static web files.

Web client computer
(with web browser)

Web server computer
(A CGI program or

servlet processes the
user

,
s request and

assembles a web page)

HTTP message

Servlets

Assembled web page

CGI program

Figure 5.2. Process user’s request with CGI or servlets.

HTTP request

Figure 5.3. Applet.

In the CGI-servlet approach, everything is done in the server computer. In the
traditional design, there is only one server in the system. If there are a large number
of clients, the server will become a bottleneck quickly. Applets can be used to solve
this problem.

Applets are Java programs which are stored in the server’s hard disk as in Fig. 5.3.
However, they will not be executed in the server. Whenever a user sends the HTTP
message to the server, an applet will be delivered to the web browser of the client
computer. The applet will be executed automatically under the web browser.

5.3 Apache Tomcat

The ability to invoke a program on a web server can be used in P2P applications.
As servlet programs are used in this book, you need a web server to test these
programs. We will demonstrate the installation of Apache Tomcat in the following
sections.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

36 5. Web Server and Related Technologies

5.3.1 Installation of J2SE Development Kit (JDK)

Download the latest java development kit from http://java.sun.com. At the time of
writing this chapter, the latest version is JDK5.0. (Note that one should not select
JRE as it is only a sub-set of JDK.) The installation of this package is quite easy.
Double click the downloaded package and follow the steps.

After the installation of JDK, you need to check the environmental variables.
If you are using Windows XP or a later version, you can set the environmental
variables by the following steps:

1. Click Start from the Window
2. Click Settings
3. Click Control panel
4. Click System option
5. Select the Advanced tab
6. Click new in the ‘System variables’ window
7. Type ‘JAVA HOME’ in the field of ‘Variable name’
8. Type the path of the installation in the field of ‘Variable value’, e.g., c:\program

files\java\jdk1.5.0 05\bin
Note that when you try to invoke a program with commands, the system will

search in the current directory. If it is not successful, the system will search
the directories specified in the ‘path’ variable.

9. Click OK (Note that a new row should be inserted into the ‘system variables’
window)

10. Click the row with ‘path’ inside the ‘System variables’ window
11. Click Edit inside the System variables window
12. Insert %JAVA HOME%\bin; as the first entry in the field of directory (Note

that entries are separated by a‘;’. Do not forget the‘′ in the insertion.)
13. Click OK in the ‘ “Edit System Variable’ window
14. Click OK in the ‘Environment Variables’ window

You can test the installation with the following command in DOS:

java –version

The computer will display the version as illustrated in Fig. 5.4.
You can also display the version of javac by typing the following command in

DOS:

javac –version

Figure 5.4. Java version

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

Apache Tomcat 37

The computer will display the version as follows:

If anything goes wrong, you can type ‘set’ in DOS to check the variables. The
computer will display contents of all variables as follows:

$USERNAME=alfred
ALLUSERSPROFILE=C:\Documents and Settings\All Users
APPDATA=C:\Documents and Settings\english\Application Data
CLASSPATH=C:\Program Files\Java\j2re1.4.1 02\lib\ext\QTJava.zip;.;\
jsdk2.1\serve r.jar;\jsdk2.1\servlet.jar
CommonProgramFiles=C:\Program Files\Common Files
COMPUTERNAME=BUG10-ALFRED
ComSpec=C:\WINDOWS\system32\cmd.exe
FP NO HOST CHECK=NO
HOMEDRIVE=C:
HOMEPATH=\Documents and Settings\english
JAVA HOME=c:\program files\java\jdk1.5.0 05
LOGONSERVER=\\BUG10-ALFRED
MAPROOTOFF=1
NUMBER OF PROCESSORS=2
OS=Windows NT
path=c:\program files\java\jdk1.5.0 05\bin

5.3.2 Installation and Testing of Tomcat

1. Download the latest version of Apache Tomcat from http://jakarta.apache.org. If
you are using a system with windows, the easiest way is to use the ‘executable’
version. (At the time when this chapter was written, the latest version was
Tomcat 5.5.12.)

2. Type the installation directory of Tomcat, e.g., c:\Tomcat 5.5\. (Note that we
will use c:\Tomcat 5.5 as the installation directory for the rest of this chapter.)

3. Select Examples and Webapps boxes as in Fig. 5.6.
4. The system will automatically pick up the right path of java as in Fig. 5.7.

However, you can select the path if it picks up the wrong directory.
5. The default port for HTTP connection is 8080 for Tomcat as in Fig. 5.8. You

can change the port to other numbers. Port 8080 and 80 are the most common
ports for web servers. As the default number is 80 for most web rowsers (e.g.,
Internet explorer and Netscape), you do not need to include the port number in
the universal resource locator (URL) if the server uses port 80. However, port
8080 is used for our discussion for the rest of this book.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

38 5. Web Server and Related Technologies

Figure 5.5. Installation directory of Tomcat.

Figure 5.6. Components of Tomcat.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

Apache Tomcat 39

Figure 5.7. Path of Java virtual machine.

Figure 5.8. Port and administration password.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

40 5. Web Server and Related Technologies

Figure 5.9. Starting Tomcat.

6. Select your own password for the administrative task in the future. Click Next.
7. Click the box of ‘Run Apache Tomcat’ (in Fig. 5.9) as it will allow you to test

the completeness of the installation.
8. If your installation is successful, you will see the window in Fig. 5.10. You need

to wait for a while depending on the speed of your computer.
9. Start a web browser and type http://localhost:8080. The computer will display

the windows in Fig. 5.11 if everything is fine.

5.4 Starting the Tomcat Server

The executable programs of Tomcat are in the \Tomcat 5.5\bin folder (Fig. 5.12).
(Note that \Tomcat 5.5\ is the installation folder of Tomcat in your com-

Figure 5.10. Starting service.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

Starting the Tomcat Server 41

Figure 5.11. Default home page of Tomcat.

puter.) You can double click either tomcat5 or tomcat5w program to start the
server.

The tomcat5w provides more user-friendly control features, thus it is more suit-
able for implementation phase (i.e., after you fully test and debug your application
programs). Double clicking the tomcat5w icon will bring up the window shown
in Fig. 5.13. You can choose the following ‘Startup type’:

� Automatic
� Manual
� Disabled

You can also start or stop the service by clicking the ‘Start’ or ‘Stop’ box in
Fig. 5.13.

Figure 5.12. Files in the bin folder.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

42 5. Web Server and Related Technologies

Figure 5.13. Window of Tomcat5w.

On the other hand, the tomcat5 provides more instant information on the activ-
ities of the server. Thus, it is more useful in the testing and development phase.
Figure 5.14 is the window of tomcat5 program. Program tomcat5 will be used for
demonstration in the rest of this book.

Figure 5.14. Window of Tomcat5.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

Better Development Environment 43

5.5 Better Development Environment

After the installation of Apache Tomcat, you can modify the settings so it is easier
and more efficient to develop your systems.

5.5.1 Servlet Compilation

Servlet features are not the core of Java servlet development kit (JSDK). Unless
you are using an IDE (Integrated Development Environment such as Jbuilder)
or similar tools, you need another library when you compile a servlet program.
This library is included in the Apache Tomcat. You can modify the environmental
variables with the following steps:

1. Click Start from the Window.
2. Click Settings
3. Click Control panel
4. Click System option
5. Select the Advanced tab
6. Click ‘New’ in the ‘System variables’ window
7. Type ‘CATALINA HOME’ in the field of ‘Variable name’
8. Type the path of the installation in the field of ‘Variable value’ e.g., c:\Tomcat

5.5
9. Click OK (Note that a new row should be inserted into the ‘System variables’

window.)
10. Click the row with ‘classpath’ inside the ‘System variables’ window

Note that if ‘classpath’ does not exist in your computer, click New inside
the ‘System variables’ window and type ‘classpath’ in the ‘Variable name’ in
the ‘New System Variable’ window. Jump to step 12.

11. Click Edit inside the System variables window
12. Insert %CATALINA HOME%\common\lib\servlet-api.jar;.; as the first entry

in the field of directory (Note that the entries are separated by a‘;’. Do not forget
the‘;’ in the insertion.)

13. Click OK in the ‘New System Variable’ window
14. Click OK in the ‘Environment Variables’ window

You can test the installation by compiling the simple.java program of this book.
Type the following command in DOS:

javac simple.java

A new simple.class will be generated if the compilation is successful.
If you want to compile a servlet program on a computer without the Apache

Tomcat, you can download another development kit (JSDK) for servlets from
http://java.sun.com.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

44 5. Web Server and Related Technologies

5.5.2 ‘Reloadable’ Feature of Tomcat

You need to modify and compile your servlet program many times in the normal
development and testing process. It will be extremely troublesome to stop and start
the web server each time you compile a program. You can turn on the ‘reloadable’
feature of Tomcat by modifying the context.xml file in the conf path under the
Tomcat installation directory. Contents of c:\Tomcat 5.5\conf\context.xml file are
as follows:

<!– The contents of this file will be loaded for each web application –>
<Context>

<!– Default set of monitored resources –>
<WatchedResource>WEB-INF/web.xml</WatchedResource>

<!– Uncomment this to disable session persistence across Tomcat restarts –>
<!−
<Manager pathname=′′ ′′/>
− >

</Context>

Change <context> in second line to <context reloadable=“true”> with a text
editor. The servlet class will be reloaded automatically when a new version is
available.

5.5.3 Invoker Servlet

All application web pages and programs should be installed under the we-
bapps path. The simplest way is to deploy web pages and JSP programs in the
webapps\root path, while servlet programs should be deployed in the webapps\
root\classes path in the testing phase.

If you have many applications in your system, it will be difficult to manage them
as programs of different applications mixed together. A better way is to create a
folder for each application under the webapps path.

The web server needs to know how to find the servlet programs when it receives
a URL from the browser. The mapping between the URL and the actual location is
done by searching the web.xml files. (There will be more than one web.xml under
the Tomcat directories.)

In other words, you need to modify the corresponding web.xml file whenever
you deploy a new servlet program into the web server. A simpler way is to enable
the invoker servlet in the Tomcat. After enabling this function, you can drop the
servlet in the webapps\root\classes directory and invoke it by typing the following
URL:

http://localhost:8080/servlet/yourServletName

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

Better Development Environment 45

It is useful and more convenient in the learning and testing process. I recom-
mendyou to enable the invoker servlet if you are not familiar with Tomcat. You
can enable this function by modifying the web.xml under the conf path.

Steps to enable the invoker servlet are as follows:

1. Locate the following two blocks in the web.xml file in the conf directory.

<!
<servlet>

<servlet-name>invoker</servlet-name>
<servlet-class>

org.apache.catalina.servlets.InvokerServlet
</servlet-class>
<init-param>

<param-name>debug</param-name>
<param-value>0</param-value>

</init-param>
<load-on-startup>2</load-on-startup>

</servlet>
>

<!−
<servlet-mapping>

<servlet-name>invoker</servlet-name>
<url-pattern>/servlet/*</url-pattern>

</servlet-mapping>
>

2. Remove the first line and last line of the above two blocks (i.e., <! and
>).

3. Save the web.xml file. You can turn off this function by adding back the first
and last line to the blocks.

4. Create classes path under the C:\Tomcat 5.5\webapps\ROOT\WEB-INF.
5. Copy the simple.class of this book to the following path:

C:\Tomcat 5.5\webapps\ROOT\WEB-INF\classes
6. Start a web browser.
7. Type http://localhost:8080/servlet/simple as the URL. The browser will display

the screen as illustrated in Fig. 5.15.

Figure 5.15. Screen of the simple servlet

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

46 5. Web Server and Related Technologies

5.5.4 Deployment of Servlets

It will be better to put the source files and compiled files (i.e., the class files) in
different directories when you have a lot of programs in your application. If you
are using an IDE tool (such as Jbuilder), then the IDE will take care of compilation
and put the class file in the right directory. However, if you do not have an IDE on
your computer, you can use the following command:

javac –d directory of the class name.java

For example, the following command will compile a simple.java program
and store the simple.class file in the c:\Tomcat 5.5\webapps\ROOT\WEB-
INF\classes.

e.g.,javac –d c:\Tomcat 5.5\webapps\ROOT\WEB-INF\classes simple.java

You can also use a wild card character ‘*’ to compile all programs in the current
directory.

e.g.,javac –d c:\Tomcat 5.5\webapps\ROOT\WEB-INF\classes *.java

It is not an interesting task to type these commands many times a day. It is also
an error-prone exercise unless you have very good typing skills. You can use a
batch file (or script file in unix or linux environment) to make your life easier. A
tom.bat file can be found in the website of this book. The contents of this file are
quite simple:

javac -d ′′c:\Tomcat 5.5\webapps\root\web-inf\classes′′ %1.java

Format of the command to invoke the batch file is tom servlet name
The following command will compile the simple.java program with the batch

file:

tom simple

Note that there is no need to type .java.

5.6 Directories

Tomcat has a lot of sub-directories, so it is quite complicated for beginners. You
need some basic understanding of the directories and the mapping mechanism of
Tomcat.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

Directories 47

5.6.1 First Level Sub-directories

There are eight directories under the installation directories:

� bin
� common
� conf
� logs
� server
� shared
� temp
� webapps
� work

We will discuss only four of them as it will be enough for the basic operations
of this book:

� bin: All executable files are stored in this directory (see Fig. 5.12 for details).
� conf: This directory stores files which control the behaviour of Tomcat server.

You can modify the files with a text editor. See Sections 5.5.2 and 5.5.3 for
details.

� logs: This directory stores different log files, so users can check the activities
of the web server. You can view or print these files with a text editor.

� webapps: All application programs (e.g., JSL and servlets) and web pages
should be installed under the sub-directories of this directory.

5.6.2 Webapps Directory

There are six sub-directories under webapps if you follow the installation proce-
dures of this chapter:

� balancer
� JSP—examples
� ROOT
� servlets-examples
� tomcat-docs
� webdav

We will discuss only four of them as follows:

� JSP—examples. This directory stores the JSP examples. Beginners can learn
JSP by modifying and testing JSP programs here.

� ROOT. The simplest way is to place your application programs and web pages
under this directory. This is an important directory, so we will discuss more
about it in the next section.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

48 5. Web Server and Related Technologies

ROOT

Admin WEB-INF

lib

classes

Figure 5.16. Structure the ROOT directory.

� servlets-examples. This directory stores the servlet examples. You should study
these examples if you are not familiar with servlets. You can also test these
servlets to decide whether the Tomcat installation is stalled properly.

� tom-docs. This directory stores the documentations of Tomcat.

5.6.3 ROOT Directory

This directory has the structure as shown in Fig. 5.16.
JSP and web pages should be placed directly under the ROOT. Classes of servlets

should be placed under the classes directory which is created by users (if necessary).
The lib directory stores the library file of Tomcat. If you have only one application or
you are in the learning/testing process, storing everything under this directory will
be fine. Otherwise you should create application directories as will be described in
next section. A web.xml file which controls the program mapping is stored in the
WEB-INF directory. The format of web.xml will be discussed in a later section.

The contents of different directories are summarized in Table 5.1.

Table 5.1. Important contents in directories.

Directory Contents

ROOT JSP and web pages (e.g., index.html)

WEB-INF web.xml

lib Library file(s) (e.g., cataline-root.jar)

classes Class files of servlet programs

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

Directories 49

5.6.4 Application Directories

Instead of storing all programs in the ROOT of the Tomcat directories, it is better
to store them on separate directories as shown in Fig. 5.17.

The structure of application directory is quite similar to that of ROOT.
Users might wish to create additional sub-directories depending on the ap-
plication. The following example (Fig. 5.18) is one of the possible sub-
directories. A summary of contents in a typical application setting is presented in
Table 5.2.

webapps

ROOT Payrol Marketing

Figure 5.17. Example of application directories.

Payroll

(web pages and jsp

files here)

WEB-INF

(web.xml)

Image

(e.g.∗.gif)

classes

(∗.class files)

lib

(∗.jar)

Figure 5.18. Example of sub-directories.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

50 5. Web Server and Related Technologies

Table 5.2. Contents under the application directories

Directory Contents

Application name JSP and web pages (e.g., index.html)

Image Picture files (e.g., *.gif)

WEB-INF web.xml

lib Library files (e.g., jar files)

classes Class files

5.7 Mapping Between URL and Servlet

After enabling the invoker servlet as in Section 5.5.3, users can install the servlet
class file in the classes directory of the ROOT. Users can invoke the servlet with
the following URL:

http://webSiteName:8080/servlet/servletName

For example, you can invoke the servlet simple.class in ROOT\WEB-
INF\classes with the following URL:

http://localhost:8080/servlet/simple

If you create an application directory as discussed in Section 5.6.4, you need
to add the name of the directory in your URL. For example, you can invoke the
servlet simple.class in the payroll\WEB-INF\classes with the following URL:

http://localhost:8080/payroll/servlet/simple

5.7.1 Using web.xml for Mapping

Instead of using the default mapping of invoker servlet, you can use the web.xml
to control the mapping. You modify the mapping by defining the following three
variables:
� Servlet-name—the logical name of the servlet assigned by you.
� Servlet-class—the physical name of the servlet (the real name of the class).
� URL-pattern—the URL to invoke the servlet.

The format to define these three variables are as follows:

<servlet>
<servlet-name>logical name of servlet</servlet-name>
<servlet-class>physical name of servlet</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name> logical name of servlet </servlet-name>
<url-pattern>url from web browser</url-pattern>

</servlet-mapping>

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

Mapping Between URL and Servlet 51

URL Logical name Physical nameMapping Mapping

Figure 5.19. Mapping process.

The URL will be mapped to a logical name first. Then the logical name will
map to the physical name of the servlet as in Fig. 5.19 .

5.7.2 Example 1

In this example, you modify the web.xml file in the ROOT\WEB-INF directory
by the following steps:

1. Copy simple.class to ROOT\WEB-INF\classes directory.
2. Insert the following blocks to ROOT\WEB-INF\web.xml file.

<servlet>
<servlet-name>simpleProgram</servlet-name>
<servlet-class>simple</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>simpleProgram</servlet-name>
<url-pattern>/go</url-pattern>

</servlet-mapping>

The variables are defined as follows:
� Servlet-name—simpleProgram.
� Servlet-class—simple (note that no need to type .class).
� URL-pattern—/go (note that do not forget to type the first character ‘/’).

3. Start your web server.
4. Start your web browser.
5. Type the following URL.

. http://localhost:8080/go

The simple.class will be invoked in the server, and the screen shown in Fig. 5.15
will be displayed in the web browser. The source codes of simple.java are presented
as described in Fig. 5.20.

5.7.3 Example 2

In this example, you modify the web.xml file in the payroll\WEB-INF directory
by the following steps:

1. Create a directory payroll under the webapps directory
2. Create a directory WEB INF under the payroll directory

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

52 5. Web Server and Related Technologies

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class simple extends HttpServlet
{

public void init() throws ServletException
{

System.out.println(′′***** simple program started ******′′);
}
public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException
{

PrintWriter output=response.getWriter();

output.println(′′<html>′′);
output.println(′′<head>′′);
output.println(′′<title> simple servlet</title>′′);
output.println(′′</head>′′);
output.println(′′<body>′′);
output.println(′′<h1>Simple ′′ + ′′</h1>′′);
output.println(′′</body>′′);
output.println(′′</html>′′);
output.close();

} // end of method

public void destroy()
{

System.out.println(′′destroy method of simple servlet called′′);
}

}

Figure 5.20. Simple java

3. Create a directory classes under the WEB-INF directory
4. Copy simple.class to payroll\WEB-INF\classes directory
5. Create a web.xml file in the payroll\WEB-INF directory with a text editor

as:

<web-app>

<servlet>
<servlet-name>payroll</servlet-name>
<servlet-class>simplePayroll</servlet-class>

</servlet>

<servlet-mapping>
<servlet-name>payroll</servlet-name>
<url-pattern>/pay</url-pattern>

</servlet-mapping>

</web-app>

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

Selection of Web Servers 53

The variables are defined as follows:
� Servlet-name—Payroll.
� Servlet-class—simplePayroll (note that no need to type .class).
� URL-pattern—/pay (note that do not forget to type the first character ‘/’).

6. Start your web server.
7. Start your web browser.
8. Type the following URL:

. http://localhost:8080/payroll/pay

Note: Do not forget the type the directory name ‘payroll’.

The simplePayroll.class in the payroll directory will be invoked in the server.
You can still invoke the same servlet by typing the following URL if the invoker
servlet is effective.

http://localhost:8080/payroll/servlet/simplePayroll

The source codes of simplePayroll.java are shown in Fig. 5.21, and the output
of this program is shown in Fig. 5.22.

5.7.4 Further Testing

I recommend you to modify the web.xml files (i.e., modify the servlet-name and
URL-pattern) of the earlier two examples and conduct more testing until you
understand the mapping.

5.7.5 Advantages of Mapping

The actual deployment of servlet (i.e., the actual name and location) can be hidden
from the users with web.xml mapping method. It will provide better security. You
can minimize changes to URLs if you change the name and location of the servlet
after the implementation.

5.8 Selection of Web Servers

There are a large number of web servers. You should consider the following
factors:

� Cost of the web server—As users might have a large number of servers, cost in
purchasing the web server might be huge. Although there are a large number of
free web servers, some of them are free only for non-commercial uses.

� Portability—Some servers can only run on a particular platform such as Mi-
crosoft Windows. This factor is more important if you have a large number of
computers with different platforms.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

54 5. Web Server and Related Technologies

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class simple extends HttpServlet
{

public void init() throws ServletException
{

System.out.println(′′***** Simple Payroll started ******′′);
}

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{
PrintWriter output=response.getWriter();

output.println(′′<html>′′);
output.println(′′<head>′′);
output.println(′′<title> Simple Payroll</title>′′);
output.println(′′</head>′′);
output.println(′′<body>′′);
output.println(′′<h1>Simple ′′ + ′′</h1>′′);
output.println(′′</body>′′);
output.println(′′</html>′′);
output.close();

}// end of method
public void destroy()
{

System.out.println(′′destroy method of simple servlet called′′);
}

}

Figure 5.21. Simple payroll java

� Compatibility—Some servers do not support servlets. Some servers need to
install another piece of software to extend their abilities to run servlets. If you
need to support other languages, such as C, php, etc., in the future, you need to
study the specifications of the servers carefully.

� User interfaces—Some servers are more difficult to use than others. For example,
Tomcat Apache is probably one of most popular web servers as it provides rich

Simple Payroll

Figure 5.22. Output of simple payroll.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 8:41

Selection of Web Servers 55

set of features. The administrator needs to edit the xml files which control the
behaviours of the server. Although it is faster for users to change the settings in
this way, this process is error prone for inexperienced users. On the other hand,
some web servers use the Window and mouse interface method to modify their
settings. This kind of server is more suitable for beginners.

P1: OTE/SPH P2: OTE
SVNY285-Loo October 18, 2006 7:7

6
Introduction to Servlets

6.1 Introduction

This chapter introduces the basic concepts of servlets. After reading this chapter,
readers will be able to modify the servlets in these models.

6.2 Servlets

A servlet is a java program that runs under a web server. It can be invoked by
an HTTP message, which is received by the web server. The HTTP message can
be sent either from a web browser (e.g., Internet Explorer, Netscape, etc.) or a
program from the client computer. The servlet will conduct some activities in the
server and then return the result to the client (usually in the form of html).

Although the idea of ‘servlets’ was not created with P2P systems in mind, this
method provides an easy way to control the calculation in a remote computer. It
can be used in our P2P model, and it provides many advantages, which will be
discussed in later chapters in more detail.

Although CGI programs can perform the same functions as servlets, we used
the servlet technology for our models for the following reasons:

� Heterogeneous parallel computing. CGI programming can be done in almost any
language, including C and C++. None of these languages are truly portable on
different platforms (e.g., Windows and Unix). Only the Java language is ‘write
once, run everywhere’. As the servlet is a pure Java solution, the actual server in
our system can be any combination of hardware and operating system. The only
requirement of the server computer is that it supports the execution of servlets.
Indeed, we have tested our system in a heterogeneous environment consisting
different Pentium computers and Sun Sparc workstations. In terms of operating
systems, these included Windows 95, 98, NT, 2000, XP, Unix and Linux. We
did not need to change a single line of our programs.

� Persistency. A servlet stays in the memory of the computer as an object after
it completes its operation. It can thus respond and execute faster than a CGI

56

P1: OTE/SPH P2: OTE
SVNY285-Loo October 18, 2006 7:7

Servlet Lifecycle 57

program. As it is persistent, it can maintain its state and hold external resources
such as database connection, communication sockets, etc. Obtaining such ex-
ternal resources might take several seconds. The states of the program might be
important for some applications. It is almost impossible for a CGI program to
achieve the same as it will disappear from memory after its execution.

� Software engineering principles. Java is an object-oriented language and sup-
ports most software engineering principles such as objects, inheritance, strong
type safety, etc., while some CGI programming languages do not have the same
level of support.

� Web server’s ability. The servlet can work together with a web server in that
it can obtain information from the server and use the server’s functionality to
perform some tasks (Hunter, 1998). Examples of such tasks include file path
translation, authorization, etc.

� Concurrency and communication support. A Java servlet has built in concur-
rency support (Lea, 1997) by creating separate threads. Its concurrency sup-
port is better than that of C and other popular high-level CGI programs. This
feature is very useful for many applications and is particularly important for
parallel programming. It is much easier to write programs for communica-
tions using sockets, datagrams and multicast techniques in Java than in other
languages.

� Portability. Since the language Java used in this implementation is highly
portable, it can be run on any platform. Programs developed on one platform
can be run without any modification on other platforms.

� Safety. In our P2P system, each server will allow servlets written by an unknown
party to run on its machine. Security is an important issue as users will not be
able to scrutinize them one by one. Servlets are safer than CGI programs in the
following senses:
◦ A servlet is written in java, and it is executed under the control of a web server.

It is impossible to have pointer and invalid memory access. Thus, it cannot
bring down the server if it is designed poorly or maliciously.

◦ The operations of a servlet are restricted by the security manager. A prop-
erly configured security manager can restrict servlets from carrying out the
following activities in the server’s computer:
� Reading or writing files.
� Deleting files.
� Transmitting information to other computers rather than the client which

initiated the HTTP message to invoke the servlet.
◦ A servlet can verify the identity of the client easily with SSL or similar tech-

nologies.

6.3 Servlet Lifecycle

Before we write a servlet, it is important to know its lifecycle. The sequence of its
operations is presented in Fig. 6.1. Basically, servlets will follow these steps:

P1: OTE/SPH P2: OTE
SVNY285-Loo October 18, 2006 7:7

58 6. Introduction to Servlets

Figure 6.1. Lifecycle of servlet.

1. Create and initialize the servlet. The initialization is done by the following
method:
� Init()

2. Wait for the request from client. It will usually perform one of the following
methods:
� doGet()
� doPost()
� doHead()
� doDelete()
� Service()

3. Destroy the servlet. Before the termination of the servlet, you can release re-
sources or conduct other activities (such as saving information to a file or passing
information to other servlets) in the following method:
� Destroy()

6.4 Servlet Collaboration

Servlets can cooperate with each other through a ‘servlet chaining’ process as
shown in Fig. 6.2. You can pass the control from one servlet to the other. In other

P1: OTE/SPH P2: OTE
SVNY285-Loo October 18, 2006 7:7

Basic Structure of Servlet 59

Figure 6.2. Servlet chaining.

words, a request from a client is handled by a series of servlets. The last servlet is
responsible for sending the final answer to the client.

6.5 Basic Structure of Servlet

The basic structure of a servlet’s example is as follows:

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class yourFileName extends HttpServlet
{

public void init(ServletConfig config) throws ServletException
{

.
Your initization routine here!

}
public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException
{

Get the input
Do something here
Assemble and send an html file to the client

}
public void destroy()
{

Anything you want to do before termination!
}

}

P1: OTE/SPH P2: OTE
SVNY285-Loo October 18, 2006 7:7

60 6. Introduction to Servlets

Servlets differ from other java programs in the following ways:

� You must include the following lines before the ‘public class’ statement:

import javax.servlet.*;
import javax.servlet.http.*;

� You must extend HttpServlet in the first line of your program. For example,
public class student extends HttpServletwhere ‘student’ is the name of your
servlet class.

� The init() and destroy() method are optional. They can be omitted if they are not
necessary.

� Usually you will have at least one of the following methods in your servlet:
◦ doGet()
◦ doPost()
◦ doHead()
◦ doDelete()
◦ Service()
Most likely you perform the following functions in this method:
◦ Obtain the input data.
◦ Process the data (such as reading records from a file, doing some calculation,

etc.).
◦ Assemble an html file and return it to the client computer.

6.6 Sending and Receiving Information

Since only doGet() method is used in our models, we will explain how to send and
receive information from the client with this method.

In order to carry out a simple test, usually we need two files:

� An html file which will send an HTTP message to the server.
� A servlet which takes the request (HTTP message) and returns an answer.

The following example asks the user to type the student ID and name in the
client computer. These two fields are sent to the server. The servlet will format
these two fields to an html file and send it back to the client computer. The html
file (student.html) is presented in Fig. 6.3, while the servlet file (student.java) is
presented in Fig. 6.4.

This program creates an output object with the following line:

PrintWriter output=response.getWriter();

Syntax of the line:

PrintWriter NameOfOutputObject =response.getWriter();

The following line gets the value of the variable ‘name’ from the browser:

P1: OTE/SPH P2: OTE
SVNY285-Loo October 18, 2006 7:7

Sending and Receiving Information 61

<HTML>
<HEAD>

<TITLE>Get the student name</TITLE>
</HEAD>
<BODY>
<FORM ACTION=′′/servlet/student′′ METHOD=′′get′′>

<H1>
Please type your name

<INPUT TYPE=′′Text′′ NAME=′′name′′ VALUE=′′′′></INPUT>

<INPUT TYPE=′′Submit′′></INPUT>
</H1>

</FORM>
</BODY>

</HTML>

Figure 6.3. Student.html

String studentName= request.getParameter(′′name′′);

Syntax of the line:

request.getParameter(′′NameOfVaribleFromBrowser′′);

The following line specifies the type of output. This piece of information is sent
to the browser.

response.setContentType (′′text/html′′);

Syntax of the setContentType statement:

NameOfOutputObject.setContentType (′′TypeOfFile′′);

A new web page is assembled by the following statements:

output.println(′′<html>′′);
output.println(′′<head>′′);
output.println(′′<title> This is your first servlet</title>′′);
output.println(′′</head>′′);
output.println(′′<body>′′);
output.println(′′<h1>Your name is:
′′);
output.println(studentName + ′′</h1>′′);
output.println(′′</body>′′);
output.println(′′</html>′′);

Syntax of the lines:

NameOfOutputObject.println“. ”); // send output to browser

P1: OTE/SPH P2: OTE
SVNY285-Loo October 18, 2006 7:7

62 6. Introduction to Servlets

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class simple extends HttpServlet
{

public void init() throws ServletException
{
System.out.println(′′***** student program started ******′′);
}

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{
PrintWriter output=response.getWriter();
String studentName= request.getParameter(′′name′′);
response.setContentType (′′text/html′′);
output.println(′′<html>′′);
output.println(′′<head>′′);
output.println(′′<title> This is your first servlet</title>′′);
output.println(′′</head>′′);
output.println(′′<body>′′);
output.println(′′<h1>Your name is:
′′);
output.println(studentName + ′′</h1>′′);
output.println(′′</body>′′);
output.println(′′</html>′′);
output.close();

} // end of method

public void destroy()
{

System.out.println(′′destroy method called′′);
}

}

Figure 6.4. Student.java

6.7 Testing your First Servlet

You can test the servlet with one computer as it can be both server and client
simultaneously. We assume you have some understanding of html files. However,
if you have problem in understanding html files, you can skip to Section 6.7 for
a simpler version of servlet that does not use any html at all. We do not use any
html in our models. Html file is presented here for academic purposes since many
applications need html files (but not ours).

P1: OTE/SPH P2: OTE
SVNY285-Loo October 18, 2006 7:7

Testing your First Servlet 63

Figure 6.5. Screen on the client computer.

1. Copy the student.html file to the default html path of your web server. (Usually
it is the /public path under the server directory, consult the documentation of
your server if you have problems.)

2. Copy the student.class file to the default servlet path of your web server.
3. Start the web browser in your computer. If you are using only one computer,

type the following line in the URL field:
http://localhost:8080/student.html

4. You will get a screen as shown in Fig. 6.5. Type in the data and submit the form.
5. You will get the answer as in Fig. 6.6.

The browser receives the following lines from the server:

<html>
<head>
<title> This is your first servlet</title>
</head>
<body>
<h1>Your name is:

David</h1>
</body>
</html>

The sequence of the operations is presented in Fig. 6.7.

Figure 6.6. Answer from the server.

P1: OTE/SPH P2: OTE
SVNY285-Loo October 18, 2006 7:7

64 6. Introduction to Servlets

Figure 6.7. Sequences of the operations.

6.8 Testing Second Servlet (Without html File)

A simpler version of servlet, studentNoHtml.java, is presented in Fig. 6.8. The dif-
ference is that it will return a string of characters to the client, not html statements.
A browser can still display such strings although the format is less elegant.

You can test this program with the following steps:

� Copy the program studentNoHtml.class to the default servlet path of your web
server.

P1: OTE/SPH P2: OTE
SVNY285-Loo October 18, 2006 7:7

Testing Second Servlet (Without html File) 65

import java.io.*;
import java.net.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class simple extends HttpServlet
{

public void init() throws ServletException
{
System.out.println(′′***** student program started ******′′);
}

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{
PrintWriter output=response.getWriter();

String studentName= request.getParameter(′′name′′);
String studentName= request.getParameter(′′name′′);
output.println(′′Your name is: ′′ + studentName);
output.close();

}
public void destroy()
{

System.out.println(′′destroy method of simple servlet called′′);
}

}

Figure 6.8. StudentNoHtml.java

� Start the web server.
� Start your web browser (e.g., Internet Explorer or Netscape).
� Type the following url in the browser

http://localhost:8080/servlet/studentNoHtml?name=David.

The client screen is shown in Fig. 6.9.

Figure 6.9. Client screen after the test.

P1: OTE/SPH P2: OTE
SVNY285-Loo October 18, 2006 7:7

66 6. Introduction to Servlets

6.9 Further Tests

If the tests in Sections 6.6 and 6.7 are fine, you should perform more tests with two
computers. Simply modify ‘localhost’ to the IP address of the server computer.

6.10 Compiling the Servlet

It will be a good exercise to modify and then test the aforementioned programs to
gain better understanding of the servlets. As servlet features are not the core part of
JSDK, you need to download the java development kit (JSDK) from www.sun.com.
Before you can compile any servlets, you need to install the development kit to
your hard disk. You also need to append the directory of the development kit to the
classpath. For example, if you have installed the version 2.1 JSDK to the directory
of \jsdk2.1 in your hard disk, you can use the following command to add the
library to the classpath:

set classpath=%classpath%;.;\jsdk2.1\server.jar;\jsdk2.1\servlet.jar;

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

7
Java Network Programming

7.1 Introduction

Since there are many computers in a P2P system, these computers need to com-
municate with each other. Knowledge of Java network programming (Courtois,
1997) is required. We will discuss the following methods in this chapter:

� URL connections
� Socket communication
� Datagram

7.2 URL Connection

When a user surfs the Web, he/she sends a URL to the remote server with a web
browser. The server then returns an object according to the specification of the
URL. This process is very simple and hides all technical details from the user.
That is why Internet surfing is so popular.

Java is designed with Internet programming in mind. It is very easy to write
a java program that can send a URL to the server. An example is presented in
Fig. 7.1. It establishes a URL connection and retrieves an object (i.e., a file in our
example) from the web server.

First try block—The connection is established in the first try block:

httpMessage = new URL(args[0]);
URLConnection connection = httpMessage.openConnection();
in = new BufferedReader(new InputStreamReader(

connection.getInputStream()));

The first line picks up the URL from the first argument of the command line.
The second line creates an object connection from the class URLConnection.
The third and fourth lines create an object in from the class BufferedReader.

67

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

// This program demonstrates how to:
// 1. send a url to a web server
// 2. get a text/html file according to the url
// 3. read and display the first line of the file
//

import java.net.*;
import java.io.*;
public class sendHttp
{

public static void main (String[] args)
{

URL httpMessage;
String answer;
BufferedReader in= null;
if (args.length >= 1)
{

System.out.println(′′your URL is:′′ + args[0]);
}
else
{

System.out.println(′′Please type the URL′′);
System.out.println(′′Format: sendHttp URL′′);
System.exit(-1);

}

try
{
httpMessage = new URL(args[0]);
URLConnection connection = httpMessage.openConnection();
in = new BufferedReader(new InputStreamReader(

connection.getInputStream()));
}
catch (IOException e)
{

System.out.println(′′Please check the url.′′);
System.out.println(e);
System.exit(-1);

}
try
{

answer = in.readLine();
System.out.println(′′The first line of the file is: ′′);
System.out.println(answer);
in.close();

}
catch (IOException e)
{

System.out.println(′′problem in reading the file′′);
System.out.println(e);

}
}

}

Figure 7.1. sendHttp.java

68

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Socket Communication 69

Figure 7.2. Screen of URL client.

Syntax of URLConnection:

URLConnection nameOfConnectionObject= httpMessage.openConnection();

Syntax of BufferedReader:

nameOfBufferReaderObject in = new BufferedReader(new InputStreamReader(
nameOfConnectionObject.getInputStream()));

Second try block.—This block reads the first line of a file downloaded from the
web server with the following statement:

answer = in.readLine();

You can change the statements in this block as follows if you want to read and
display all lines of the file:

while ((answer = in.readLine())!=null)
System.out.println(answer);
in.close();

The complete coding of the modified program (sendHttpAll.java) can be found in
the website of this book.

7.2.1 Testing

Syntax of testing command: java sendHttp URL. For example, java sendHttp
http://cptra.ln.edu.hk/∼alfred

java sendHttp http://localhost:8080/phone.html

The program will display the information on the screen as shown in Fig. 7.2.

7.3 Socket Communication

Communication via the URL connection method (Courtois, 1997) is very simple. It
is easy to write programs to implement this method. The protocol is well defined,
and application programmers do not need to take care of the technical details.
Process in the server is completely handled by the web server. However, if we

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

70 7. Java Network Programming

need more flexibility in communication, we need to use more complex methods.
Socket communication is one of them. It is similar to a phone conversation. The
communication process with phones consists of the following steps:

� Dial the number.
� Wait for the other side to pick up the phone.
� Talk to each other once the connection is established.
� Hang up the phone.

It has the following characteristics:

� The connection must be established before the communication.
� Connection is maintained even if the line is idle. For example, your friend asks a

question in the phone conservation. You need to think for several seconds before
you can answer so there is an idle period.

� The connection is closed only after the communication process is completed.

7.3.1 Client Side Program—Socket

The following client program sends a request to establish connection with the
server. It despatches a simple message ‘How are you?’ to the server and waits for
the answer. It then displays the answer on the screen. The program is presented in
Fig. 7.3.

First try block. —
The connection is established with the following lines. The first line sends a request

for connection to the server. The second and third lines initialise the PrintStream
object (for output) and BufferReader object (for input).

powerSocket = new Socket(IP, 3333);
out = new PrintStream(powerSocket.getOutputStream());
in = new BufferedReader(new InputStreamReader(

powerSocket.getInputStream()));

The syntax for defining the socket is:

Socket nameOfSocket; :
nameOfSocket = new Socket(IP, 3333);

The syntax for defining the output object is:

PrintStream nameOfOutputObject =null ;
nameOfOutputObject = new PrintStream(nameOfSocket.getOutputStream());

The syntax for defining the input object:

BufferedReader nameOfInputObject =null;
nameOfInputObject = new BufferedReader(new InputStreamReader(

nameOfSocket.getInputStream()));

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

import java.net.*;
import java.io.*;
public class socketClient {

public static void main(String[] args) throws IOException {
String IP;
PrintStream out=null ;
BufferedReader in =null;
Socket powerSocket;
// ************ get parameter from command argument *******
if (args.length >= 1)

{
IP =args[0];
System.out.println(′′IP address:′′ + IP);

}
else

{
IP = ′′localhost′′;

}
// ************* connect to server ****************
try
{

System.out.println(′′connecting site: ′′+IP);
powerSocket = new Socket(IP, 3333);
out = new PrintStream(powerSocket.getOutputStream());
in = new BufferedReader(new InputStreamReader(

powerSocket.getInputStream()));
}
catch (UnknownHostException e)
{

System.err.println(′′unknown host: ′′+IP);
System.exit(1);

}
catch (IOException e)
{

System.err.println(′′connection to: ′′+IP);
System.exit(1);

}
System.out.println(′′connection ok′′);

// *********** start to communicate *****************
out.println(′′How are you?′′); // transmit to power server
String answer;
if ((answer = in.readLine())!= null)

System.out.println(′′server’s answer: ′′+answer);
} // end of main method

}

Figure 7.3. socketClient.java

71

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

72 7. Java Network Programming

Sending and receiving messages.—The following line sends a message to the
server:

out.println(′′How are you?′′); // transmit to power server

The following lines receive messages from the server:

String answer;
if ((answer = in.readLine())!= null)

System.out.println(′′server’s answer: ′′+answer);

7.3.2 Server Side Program

This program is presented in Fig. 7.4.

First try block.—This program creates a socket with the following line:

serverSocket = new ServerSocket(3333);

Second try block.—The following statement accepts the connection request from
client.

powerSocket=serverSocket.accept();

Third try block.—The following lines initialise the input and output objects:

out = new PrintWriter(powerSocket.getOutputStream(), true);
in = new BufferedReader(new InputStreamReader(

powerSocket.getInputStream()));

Fourth try block.—The server receives a message from the client with the following
lines:

fromClient = in.readLine();
System.out.println (′′Client’s Message:′′ +fromClient);

The server sends a message to the client with the following lines:

toClient = ′′Thank you! I am fine.′′;
out.println(toClient);

7.3.3 Sequences of Operations

The sequences of operations in client and server are summarized in Table 7.1.

7.3.4 Testing 1

Programs can be tested with the following steps as in Fig. 7.6:

1. Type the following command in your server machine:

java socketServer

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Socket Communication 73

Table 7.1. Sequences of operations.

Client Direction Server

1 Nil Create socket

serverSocket = new ServerSocket(3333);

2 Create socket by sending a request to server

powerSocket = new Socket(IP, 3333);
→−→ Listen to connection request

powerSocket=serverSocket.accept()

3 Create input and output objects Create input and output objects

4 Send a message to server

out.println(′′How are you?′′);
→−→ Receive a message from

fromClient = in.readLine();

5 Receive an answer from server ← Send a message to client

answer = in.readLine() ←− out.println(toClient);

6 Close the socket Close the socket

2. Type the following command in your client machine as in Fig. 7.5:

java socketClient IPaddress

where IPaddress is the IP address of your client computer.
e.g., java socketClient 192.168.1.2
The client program will use ‘localhost’ as the IP address if the user does not
type it in the command line.

7.3.5 Multi-Threads Server

The server program is fine if the system has only one client. However, you need to
modify the program if the system supports many clients simultaneously. One way
to handle multiple requests from clients is to generate one thread for one client’s
request. A new version of server program is presented in Figs. 7.7 and 7.8, and it
consists of two modules:

� mSocketServer
◦ Create a socket.
◦ Listen to client’s request.
◦ Generate a socket.
◦ Generate a thread to handle the request.

� mSocketServerThread (thread created by mSocketServer)
◦ Create input and output objects.
◦ Receive a message from client.
◦ Send a message to client.
◦ Close the socket.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

74 7. Java Network Programming

import java.io.*;
import java.net.*;
import java.util.*;
public class socketServer

{
public static void main (String[] args)

throws IOException
{

ServerSocket serverSocket = null;
boolean listening = true;
Socket powerSocket= null;
System.out.println(′′************************************′′);
try
{

serverSocket = new ServerSocket(3333);
}
catch (IOException e)
{

System.err.println(′′please check port 3333′′);
System.exit(-1);

}
while (listening)
{

try
{
System.out.println(′′waiting for Client ******′′);
powerSocket=serverSocket.accept();
}
catch (IOException e)
{
System.err.println(′′accept failed′′);
}

// ***************************************
String fromClient= ′′ ′′;
String toClient= ′′initial value′′;
PrintWriter out =null;
BufferedReader in=null;
try
{
out = new PrintWriter(powerSocket.getOutputStream(), true);
in = new BufferedReader(new InputStreamReader(

powerSocket.getInputStream()));
} // END TRY

Figure 7.4. socketServer.java

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Socket Communication 75

catch (IOException e)
{

System.out.print (′′io exception in input/output′′);
}

// *************** get data from client *******
try
{
fromClient = in.readLine();
System.out.println (′′Client’s Message:′′ +fromClient);
// ************** send information to client ************
toClient = ′′Thank you! I am fine.′′;
out.println(toClient);

} // END TRY
catch (IOException e)
{

System.out.print (′′io exception in input/output ′′);
}

// ******************* closing down ******************
try
{

out.close();
in.close();
powerSocket.close();

}
catch (IOException e)
{

System.out.print (′′io exception in CLOSING′′);
}
} // end of while

}// end of main method
}

Figure 7.4. (Continued)

Figure 7.5. Screen of client.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Figure 7.6. Screen of server.

import java.io.*;
import java.net.*;
import java.util.*;
public class mSocketServer

{

public static void main (String[] args)
throws IOException

{
ServerSocket serverSocket = null;
boolean listening = true;
Socket powerSocket= null;
System.out.println(′′*****************************′′);
try
{

serverSocket = new ServerSocket(3333);
}
catch (IOException e)
{

System.err.println(′′please check port 3333.′′);
System.exit(-1);

}
while (listening)
{

try
{
System.out.println(′′waiting for Client ******′′);
powerSocket=serverSocket.accept();
new mSocketServerThread(powerSocket).start();
}
catch (IOException e)
{
System.err.println(′′socket accept failed′′);
}

} // end of while
} // end of method

}

Figure 7.7. mSocketServer.java

76

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

import java.io.*;
import java.net.*;
import java.util.*;
import java.net.*;
public class mSocketServerThread extends Thread
{

Socket powerSocket=null;
public mSocketServerThread (Socket powerSocket)

throws IOException
{

this.powerSocket=powerSocket;
String fromClient= ′′ ′′;
String toClient= ′′initial value′′;
PrintWriter out =null;
BufferedReader in=null;
try
{
out = new PrintWriter(powerSocket.getOutputStream(), true);
in = new BufferedReader(new InputStreamReader(

powerSocket.getInputStream()));
} // END TRY
catch (IOException e)

{
System.out.print (′′io exception in/out ′′);

}
//---------------------------------- get data --------------
try
{
fromClient = in.readLine();
System.out.println (′′Client’s Message:′′ +fromClient);
// ***************** send information to client ****************
toClient = ′′Thank you! I am fine.′′;
out.println(toClient);
} // END TRY
catch (IOException e)
{

System.out.print (′′io exception in input/output ′′);
}

// ******************* closing down ******************
try
{

out.close();
in.close();
powerSocket.close();

}
catch (IOException e)
{

System.out.print (′′io exception in CLOSING′′);
}

} // end of method
}

Figure 7.8. mSocketServerThread.java

77

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

78 7. Java Network Programming

Table 7.2. Sequence of the thread operation.

Steps Client Direction Server

1 Nil Create socket

serverSocket = new ServerSocket(3333);

2 Create socket by sending a request to

server

−→ Listen to connection request

powerSocket=serverSocket.accept()
powerSocket = new Socket(IP, 3333); −→

3 Nil Create a thread

new mSocketServerThread
(powerSocket).start();

4 Create input and output objects Create input and output objects

5 Send a message to server

out.println(′′How are you?′′);
−→−→ Receive a message from

from Client = in.readLine();

6 Receive an answer from server

answer = in.readLine()
←−←− Send a message to client

out.println(toClient);

7 Close the socket Close the socket

The following lines accept the request from the client and create a socket
‘powerSocket’. A thread is generated with the socket object in the second line.

powerSocket=serverSocket.accept();
new mSocketServerThread(powerSocket).start();

The syntax of the statements:

NameOfSocket=serverSocket.accept();
new mSocketServerThread(NameOfSocket).start();

The sequences of the operations are summarized in Table 7.2.
The module mSocketServer performs steps 1 to 3 on the server’s side. The

module mSocketServerThread performs steps 4 to 7.

7.3.6 Testing 2

Programs can be tested with the following steps as in Figs. 7.9, 7.10, and 7.11:

1. Type the following command in your server machine:

java mSocketServer

Figure 7.9. Server in waiting state.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Datagram 79

Figure 7.10. Screen of client.

Figure 7.11. Screen of server after the communication.

2. Type the following command in your client machine:

java socketClient IPaddress

where IPaddress is the IP address of your client computer. For example, java
socketClient 192.168.1.2

The client program will use ‘localhost’ as the IP address if user does not type it in
the command line.

7.4 Datagram

Datagram communication (Campione and Walrath, 2001; Deitel, 2005) is similar to
mailing a letter to your friend. You insert your messages into an envelope and drop
it in the post office. The advantage is that there is no need to establish a connection
before you send the letter. However, the letter might not reach your friend. If the
letter is important, you need to set up the mechanism to ensure that your friend
receives the letter. For example, you might ask him/her to acknowledge your letter.

You insert your messages into packets via the datagram method. If one packet
is not enough for your message, you can use several packets. The datagram has
the following advantages and disadvantages compared with the socket communi-
cations in the previous section.

Advantages
� No need to establish connection.
� No need to wait for the other computer as there is no connection.
� Requirement of resources is minimized as we do not need to maintain the

connection during the communication process.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

80 7. Java Network Programming

Disadvantages
� The packet might be lost in the process.
� Packets might not be received in the original sending order.
� Programmers need to build their own error checking routine if the messages

are important.

There are three forms of datagram communication:

Unicast.—A message is received by only one computer. In other words, the com-
munication takes place only between two computers. It is quite different from
multicast and broadcast methods.

Multicast.—More than one computer can receive a single message. Each computer
in the network can decide whether it wants to join the multicast group.

Broadcast.—A message is sent to all computers on the network in this mode.

7.4.1 Unicast

An example with unicast is presented in this section. The client program (Fig. 7.12)
sends a datagram to the server. The server sends an acknowledgement back to the
client.

Datagram client program—This program accepts the user’s input (the port number
and IP address of the server) with the following statements. If these two pieces
of information are not specified, the default values will be used (i.e., 3334 for
port number and localhost for address).

if (args.length >= 1)
{

serverSite = args[0];
}

else
{

System.out.println(′′please type the server address:′′);
System.out.println(′′DatagramClient serverAddress portNumber′′);
System.exit(−1);

}
if (args.length ==2) portNum=Integer.parseInt(args[1]);

This program sends a message ‘How are you?’ to the server with the following
statements:

DatagramSocket socket = new DatagramSocket();
InetAddress address = InetAddress.getByName(serverSite);
byte[] ServerMsg = new byte[28];
String msg=′′How are you?′′;
ServerMsg = msg.getBytes();
DatagramPacket toServerPacket;

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

// Operations of this program:
// 1. send a datagram to server
// 2. receive a datagram from client
//
import java.io.*;
import java.net.*;
import java.util.*;

public class DatagramClient
{

public static void main(String[] args) throws IOException
{

int portNum =3334;
String serverSite=null;

if (args.length >= 1)
{

serverSite = args[0];
}
else

{
System.out.println(′′please type the server address:′′);
System.out.println(′′DatagramClient serverAddress portNumber′′);
System.exit(-1);

}
if (args.length ==2) portNum=Integer.parseInt(args[1]);
System.out.println(′′port : ′′ + portNum);
DatagramSocket socket = new DatagramSocket();
InetAddress address = InetAddress.getByName(serverSite);
byte[] ServerMsg = new byte[28];
String msg=′′How are you?′′;
ServerMsg = msg.getBytes();
DatagramPacket toServerPacket;
toServerPacket = new DatagramPacket(ServerMsg, ServerMsg.length,

address,portNum);
socket.send(toServerPacket);
// ****** receive datagram **********
DatagramPacket packet;
packet = new DatagramPacket(ServerMsg, ServerMsg.length);
socket.receive(packet);
String fromServer = new String(packet.getData());
System.out.println(′′Server’s Address: ′′ + packet.getAddress());
System.out.println(′′Server’s message: ′′ + fromServer);

socket.close();
}

}

Figure 7.12. DatagramClient

81

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

82 7. Java Network Programming

toServerPacket = new DatagramPacket(ServerMsg, ServerMsg.length,
address,portNum);

socket.send(toServerPacket);

Syntax of the statements:

DatagramSocket nameOfSocket = new DatagramSocket();
DatagramPacket nameOfPackett;
nameOfPackett= new DatagramPacket(NameOfMesssage,

NameOfMesssage.length,
AddressOfOtherComputer,
portNumberOfOtherComputer);

nameOfSocket.send(nameOfPackett);

The statements which receive a message from other computer are simpler. It does
not need to know the details of the sender (such as address and port number).
Only three lines are required:

DatagramPacket packet;
packet = new DatagramPacket(ServerMsg, ServerMsg.length);
socket.receive(packet);

Syntax of the above three lines:

DatagramPacket NameOfPacket;
NameOfPacket = new DatagramPacket(NameOfMessage,

NameOfMessage.length);
NameOfSocket.receive(NameOfPacket);

Datagram server program.—The server waits for a request (a simple ‘How are
you?’ message in this example) from the client. It sends a reply (‘I am fine!’
message) to the client. The server can entertain up to 100 messages before
it terminates the program. The source codes of the program are presented in
Fig. 7.13.

This program waits for message with the following statement:

socket.receive(fromClient);

The server can obtain the client’s information with the following statements:

int clientPort =fromClient.getPort();
System.out.println(′′Client’s site: ′′ +fromClient.getAddress());
System.out.println(′′Client’s port: ′′ + clientPort);
int clientLength=fromClient.getLength();

In order to send a reply to the client, the server needs to know the port number
and address of the client. However, there is no need to send these two pieces of
information to the server in the client program.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

// This thread sends the answer to client 100 times.
//
import java.io.*;
import java.net.*;
import java.util.*;

public class DatagramServer
{

public static void main(String[] args)
{

int portNum =3334;
if (args.length >= 1)

{
portNum =Integer.parseInt(args[0]);

}
byte[] dataMsg = new byte[29];
String msg;
System.out.println(′′port of client: ′′ + portNum);
try
{

DatagramSocket socket = new DatagramSocket(portNum);
// the server is receiving in our example

System.out.println(′′socket created′′);
for (int i = 1; i < 101; i++)

{
DatagramPacket fromClient =new DatagramPacket(dataMsg,

dataMsg.length);
// waiting for message from client
socket.receive(fromClient);
int clientPort =fromClient.getPort();
System.out.println(′′Client’s site: ′′ +fromClient.getAddress());
System.out.println(′′Client’s port: ′′ + clientPort);
int clientLength=fromClient.getLength();
String clientMsg = new String(fromClient.getData(),0,clientLength);
System.out.println(′′Client’s message: ′′ +clientMsg);
System.out.println(′′Length of Msg: ′′ + clientLength);
msg = ′′I am fine! ′′ ;
dataMsg = msg.getBytes();

DatagramPacket toClient = new DatagramPacket(dataMsg,
dataMsg.length,
fromClient.getAddress(),
clientPort);

socket.send(toClient);
System.out.println(′′just sent ′′ + i + ′′ packets\n′′);

} // end of for loop
socket.close();

}

catch (IOException e)
{
e.printStackTrace();
}

}
}

Figure 7.13. DatagramServer.java

83

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

84 7. Java Network Programming

Figure 7.14. Screen of Datagram Server.

Syntax of the methods:

NameOfSocket.receive(NameOfIncomingMessage)—receive a message
NameOfIncomingMessage.getPort() - obtain port number
NameOfIncomingMessage.getAddress() - obtain address
NameOfIncomingMessage.getLength() - obtain length of the message

Testing.—These programs can be tested with following steps:
� Type the following command in the server window (Fig. 7.14):

java DatagramServer 3335

where 3335 is the port number (default=3334)
� Type the following command in the client window (Fig.7.15)

java DatagramClient localhost 3335

If the test is successful, you can start the client program on a second computer.
The syntax of the command is:

java DatagramClient AddressOfServer PortNumberOfServer
e.g., java DatagramClient 192.168.1.2 3335

The server program will remain in the memory until it serves 100 messages.

Figure 7.15. Screen of datagram client.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Datagram 85

7.4.2 Multicast

In some applications, we need to send a message to many computers. It will be
time consuming if we use the unicast method. The same message needs to be sent
many times. A better approach is to use the multicast method as a message can
be sent to multiple computers simultaneously. It is much faster. Furthermore, the
message is sent only once.

Although both multicast and broadcast methods can send messages to multiple
computers, multicast provides greater flexibility. The broadcast method sends a
message to all computers in the network. On the other hand, clients can decide
whether they need a particular message by joining and leaving multicast group.
This allows us to involve a selected group of computers in a network in our com-
munication process.

7.4.2.1 Multicast Client Program

This program joins a multicast group and picks up five messages from the server.
It does not need to know the IP address of the server. However, it needs to specify
the port number of the server. The default port is 3334 in both server and client
programs in our example. Users can override the port number by supplying it in
the command that invokes the program (see Fig. 7.16).

The following lines allow the user to override the default value of the port
number which is used by the server.

if (args.length >= 1)
{

portNum =Integer.parseInt(args[0]);
}

The following lines enable the client to join the multicast group:

MulticastSocket socket = new MulticastSocket(portNum);
InetAddress address = InetAddress.getByName(′′230.0.0.1′′);
socket.joinGroup(address);

Syntax of the aforesaid lines:

MulticastSocket NameOfSocket= new MulticastSocket(portNumberOfServer);
InetAddress NameOfAddress= InetAddress.getByName(′′MuticastChannel′′);
NameOfSocket.joinGroup(NameOfAddress);

where MulticastChannel is a value from 224.0.0.1 to 239.255.255.255

The program obtains a message from the server with the following line:

socket.receive(packet);

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

86 7. Java Network Programming

import java.io.*;
import java.net.*;
import java.util.*;

public class MulticastDemoClient
{

public static void main(String[] args) throws IOException
{

int portNum =3334;
if (args.length >= 1)
{

portNum =Integer.parseInt(args[0]);
}

System.out.println(′′port : ′′ + portNum);
MulticastSocket socket = new MulticastSocket(portNum);
InetAddress address = InetAddress.getByName(′′230.0.0.1′′);
socket.joinGroup(address);
byte[] ServerMsg = new byte[28];
DatagramPacket packet;
packet = new DatagramPacket(ServerMsg, ServerMsg.length);
for (int i = 0; i < 5; i++)

{
socket.receive(packet);
String fromServer = new String(packet.getData());
System.out.println(′′Server’s Address: ′′ + packet.getAddress());
System.out.println(′′Time of Server : ′′ + fromServer);

}
socket.leaveGroup(address);
socket.close();

}

}

Figure 7.16. MulticastDemoClient

7.4.2.2 Server Side Program

This server program sends 100 messages (the current date and time) to the network.
It does not wait for the client to take any actions. It does not have any knowledge
of the number of clients in the network.

If you multicast a large number of messages in a prolonged period, it will
overload the network. Other computers will not be able to communicate. In our
example, the program sleeps for 3 s after it sends a message so it will not overload
the network. The whole process will take about 300 s (i.e., 5 min) if it is not
interrupted by user. The default port is 3334 but user can override it (if necessary).

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Datagram 87

// This program sends 100 multicast messages
//
public class MulticastDemoServer
{

public static void main(String[] args)
{

int portNum =3334;
if (args.length >= 1)
{

portNum =Integer.parseInt(args[0]);
}

new MulticastDemoServerThread(portNum).start();
}

}

Figure 7.17. MulticastDemoServer.java

This program consists of two modules:

� MulticastDemoServer (Fig. 7.17)
� MulticastDemoServerThread (Fig. 7.18)

The MulticastDemoServer module performs only two functions:

� Accept user’s input (i.e., port number) with the following lines:

if (args.length >= 1)
{

portNum =Integer.parseInt(args[0]);
}

� Create a thread to handle the multicasting with the following lines:

new MulticastDemoServerThread(portNum).start();

The new thread is presented in Fig. 7.18. The constructor accepts the port number
from the MulticastDemoServer module.

This program multicasts the message with the following lines:

InetAddress group = InetAddress.getByName(′′230.0.0.1′′);
DatagramPacket packet = new DatagramPacket(now, now.length,

group, portNum);
socket.send(packet);

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

// This thread sends the time of server 100 times.
//
import java.io.*;
import java.net.*;
import java.util.*;

public class MulticastDemoServerThread extends Thread
{

int portNum;
public MulticastDemoServerThread (int portNum)
{

this.portNum=portNum;
}
public void run()
{

long ONE SECOND = 1000;
byte[] now = new byte[29];
String msg;
System.out.println(′′port of client: ′′ + portNum);
try
{

MulticastSocket socket = new MulticastSocket();
// no need to specify the port number
// as the server is not receiving anything in our example
for (int i = 0; i < 100; i++)

{
msg = new Date().toString() ;
now = msg.getBytes();

InetAddress group = InetAddress.getByName(′′230.0.0.1′′);
DatagramPacket packet = new DatagramPacket(now, now.length,

group, portNum);
socket.send(packet);
System.out.println(′′just sent ′′ + i + ′′ packets′′);

// sleep for a while
try

{
sleep((long)(3 * ONE SECOND));

}
catch (InterruptedException e)

{
System.out.println(′′cannot sleep?′′);

}
} // end of for loop
socket.close();

}

catch (IOException e)
{

e.printStackTrace();
}

}
}

Figure 7.18. MulticastDemoServerThread.java

88

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Datagram 89

Figure 7.19. Screen of multicast

server.

Syntax of the aforementioned lines:

InetAddress NameOfGroup= InetAddress.getByName(MulticstChannel);
DatagramPacket NameOfPacket= new DatagramPacket(NameOfMessage,

NameOfMessage.length,
MulticstChannel,
PortNumber);

NameOfSocket.send(NameOfPacket);

The following line causes the thread to enter ‘sleep”’ state for 3 s.

sleep((long)(3 * ONE SECOND));

7.4.2.3 Testing

The testing procedures are very simple:

� Type ‘java MulticastDemoServer’ in the server computer (Fig. 7.19).
Syntax of the command: java MulticastDemoServer portNumber

where port number is optional.

Figure 7.20. Screen of first multicast client.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

90 7. Java Network Programming

Figure 7.21. Screen of second multicast client.

� Type ‘java MulticastDemoClient’ in the two client computers. Each client joins
the multicast group at a different time so the contents in their screens (Figs. 7.20
and 7.21) are different in our example.
Syntax of the command: java MulticastDemoServer portNumber

where port number is optional

7.5 Differences

The differences between socket, unicast, multicast and broadcast are summarized
in Table 7.3.

Table 7.3. Differences of communication methods.

Communication Communication

methods Server-client ratio Reliability directions

Socket One to one (for each connection) Reliable Two ways

Unicast One to one Unreliable One way

Multicast One to many Unreliable One way

Broadcast One to all Unreliable One way

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

8
Testing and Enhancements of Servlets

8.1 Introduction

Servlets are java programs, and they are executed under the control of a web server.
They provide the following advantages:

1. The life cycle of a servlet is well defined and so it is easier to follow the
program’s logic.

2. Communications and initialization of servlets are actually handled by the web
server. The server hides the technical details from developers so programmers
can concentrate in writing the logic of their applications.

3. A servlet can support the requests of multiple clients at the same time.

However, it is more complicated to test the servlets than other java programs.
We will introduce some features that can enhance the testing and performances of
servlets in this chapter.

8.2 Debugging Techniques

Writing communication programs is usually more complicated than developing
other programs because they involve at least two computers. In some cases, there
are many computers communicating simultaneously in the system. If you are us-
ing an integrated development environment (IDE) such as Borland JBuilder, it
will make your life easier. However, these tools still have their limitations. It is
extremely difficult to simulate communications of multiple computers (i.e., mul-
tiple servers and browsers) with one IDE. It might be inconvenient or expensive
to install the IDE on every computer in the network.

One common debugging technique in the old days was to insert ‘print’ statements
to the programs when there were hardly any debugging tools. This technique is
still useful for the testing of communication programs involving large numbers of
computers. It provides the following information to the programmers:

� Confirmation that a particular block is executed.
� The value of a variable at a particular time.

91

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

92 8. Testing and Enhancements of Servlets

After the completion of the debugging process, these statements should be re-
moved. Users will be bothered if you supply them with too many irrelevant pieces
of information. However, if you insert a large number of ‘print’ statements in the
program, it will be a time-consuming and error-prone exercise to remove them
later. Furthermore, you might still need them in a later stage as some bugs are still
not discovered in the testing phase.

This problem can be overcome by incorporating a test indicator (a variable) in
the program. The ‘print’ is active only if the indicator is ‘on’. You can change the
value of the test indicator by specifying the parameter in the command invoking
the program.

Nevertheless, you cannot change the test indicator of a servlet with a command
as it is invoked by the web server. We will discuss methods that can modify the
parameters in a servlet.

8.2.1 Parameters in web.xml File

The value of the test indicator can be controlled by modifying the web.xml file in the
web server. The following example controls the value of a parameter ‘debugInd’.
Its value is ‘0’ in the example.

<servlet>
<servlet-name>init</servlet-name>
<servlet-class>init</servlet-class>
<init-param>

<param-name>debugInd</param-name>
<param-value>0</param-value>

</init-param>
</servlet>

<servlet-mapping>
<servlet-name>init</servlet-name>
<url-pattern>/init</url-pattern>

</servlet-mapping>

Syntax of the lines is as follows:

<servlet>
<servlet-name>logical name of servlet</servlet-name>
<servlet-class>physical name of servlet</servlet-class>
<init-param>

<param-name>Name of parameter</param-name>
<param-value>Value of parameter</param-value>

</init-param>
</servlet>

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Debugging Techniques 93

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class init extends HttpServlet
{

String ind;
public void init() throws ServletException
{

System.out.println(′′***** init program started ******′′);

ServletConfig cfg = getServletConfig();
ind= cfg.getInitParameter(′′debugInd′′);
System.out.println(′′Test Indicator:′′+ind);

}

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{
PrintWriter output=response.getWriter();
response.setContentType (′′text/html′′);
output.println(′′<html>′′);
output.println(′′<head>′′);
output.println(′′<title> simple servlet</title>′′);
output.println(′′</head>′′);
output.println(′′<body>′′);
output.println(′′<h1>Simple ′′ + ′′</h1>′′);
if (ind.equals(′′1′′))

output.println(′′<h2>testing</h2>′′);
output.println(′′</body>′′);
output.println(′′</html>′′);
output.close();

} // end of method

public void destroy()
{

System.out.println(′′destroy method of init called′′);
}

}

Figure 8.1. init.java

<servlet-mapping>
<servlet-name>logical name of servlet </servlet-name>
<url-pattern>url from web browser</url-pattern>

</servlet-mapping>

The program shown in Fig. 8.1 gets the value of the test indicator from the block.
It displays ‘simple’ on the browser’s screen. It displays an additional message
‘testing’ on the client’s screen if the value of the test indicator is ‘1’.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

94 8. Testing and Enhancements of Servlets

Simple
Figure 8.2. Screen of the browser (test indication

off).

The following statements retrieve the value of the indicator from the web.xml
file:

ServletConfig cfg = getServletConfig();
ind = cfg.getInitParameter(′′debugInd′′);

Syntax of the aforementioned line is

ServletConfig NameOfConfig = getServletConfig();
NameOfVariable = NameOfConfig.getInitParameter(′′NameOfParameter′′);

Testing (test indicator off)
1. Insert the block (in Section 8.2.1) into the web.xml file and save it.
2. Start the web server.
3. Start your browser.
4. Type http://localhost:8080/init.

Figure 8.2 shows the screen of the browser. The value of the test indicator is also
displayed on the console of Tomcat.

Testing 2 (indicator on)—We turn on the test indicator in this test.
1. Start the web server.
2. Change the value of the indicator to ‘1’as in the following block. Note that

you do not need to close the Tomcat server when you update the web.xml file.
The server will automatically re-load the context file as in Fig. 8.3. ‘Destroy’
methods of servlets will be called.

Figure 8.3. Reloading context.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Global Parameters 95

Simple
testing

Figure 8.4. Screen of program init (test indicator

on).

<servlet>
<servlet-name>init</servlet-name>
<servlet-class>init</servlet-class>
<init-param>

<param-name>debugInd</param-name>
<param-value>1</param-value>

</init-param>
</servlet>

<servlet-mapping>
<servlet-name>init</servlet-name>
<url-pattern>/init</url-pattern>

</servlet-mapping>

3. Start your browser.
4. Type http://localhost:8080/init.

Figure 8.4 shows the screen of the browser. The value of the test indicator is also
displayed on the console of Tomcat.

8.3 Global Parameters

In addition to controlling the test indicator, parameters can be used to change the
operations of servlets in run time. For example, instead of coding the file name
inside the servlet, it can be stored in the parameter. Parameters in the web.xml file
provide more flexibility in your program. It can minimize maintenance work if
this technique is used properly.

In the previous section, you learn how to specify a parameter for one servlet.
If several servlets share the same parameter, you still need to insert one block for
one servlet. This is a tedious task. Besides, maintenance will be more difficult if
there are a large number of such parameters. A better way is to use the ‘context
parameter’ to define global variables. A ‘context parameter’ can be accessed by
all servlets of an application system.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

96 8. Testing and Enhancements of Servlets

8.3.1 Example of a Context Parameter

This example defines a parameter ‘global’. Its value is ‘ip.txt’.

<context-param>
<param-name>global</param-name>
<param-value>ip.txt</param-value>

</context-param>

Syntax of the block is as follows:

<context-param>
<param-name>Name of the global parameter</param-name>
<param-value>Value of the global parameter</param-value>

</context-param>

8.3.2 office.java

The program shown in Fig. 8.5 extracts two file names from the web.xml file. The
first file name is a global file, which is also used by other servlets. The second file
is used by this program only.

The following statements retrieve the global file name:

ServletContext global = getServletContext();
GlobalFile=global.getInitParameter(′′global′′);
System.out.println(′′Global value:′′+GlobalFile);

The following statements retrieve the private file name:

ServletConfig cfg = getServletConfig();
LocalFile= cfg.getInitParameter(′′FileName′′);
System.out.println(′′Local value: ′′+LocalFile);

The corresponding lines for the private file name in the web.xml are as follows:

<servlet>
<servlet-name>office</servlet-name>
<servlet-class>office</servlet-class>
<init-param>

<param-name>FileName</param-name>
<param-value>File 1.txt</param-value>

</init-param>
</servlet>

<servlet-mapping>
<servlet-name>office</servlet-name>
<url-pattern>/office</url-pattern>

</servlet-mapping>

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Global Parameters 97

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class office extends HttpServlet
{

String GlobalFile;
String LocalFile;
public void init() throws ServletException
{

System.out.println(′′*** office program started ***′′);
ServletConfig cfg = getServletConfig();
LocalFile= cfg.getInitParameter(′′FileName′′);
System.out.println(′′Local value: ′′+LocalFile);

ServletContext global = getServletContext();
GlobalFile=global.getInitParameter(′′global′′);
System.out.println(′′Global value:′′+GlobalFile);

}

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException
{

PrintWriter output=response.getWriter();
response.setContentType (′′text/html′′);
output.println(′′<html>′′);
output.println(′′<head>′′);
output.println(′′<title> office</title>′′);
output.println(′′</head>′′);
output.println(′′<body>′′);
output.println(′′<h1>′′);
output.println(′′Globle File: ′′+GlobalFile);
output.println(′′
′′);
output.println(′′Local File: ′′+LocalFile);
output.println(′′</h1>′′);
output.println(′′</body>′′);
output.println(′′</html>′′);
output.close();

} // end of method

public void destroy()
{

System.out.println(′′destroy method of office called′′);
}

}

Figure 8.5. office.java

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

98 8. Testing and Enhancements of Servlets

The following statements send the value of both parameters to the browser:

output.println(′′Globle File: ′′+GlobalFile);
output.println(′′
′′);
output.println(′′Local File: ′′+LocalFile);

8.3.3 Testing of office.java

1. Start your web server.
2. Insert the following blocks to the web.xml file.

<context-param>
<param-name>global</param-name>
<param-value>ip.txt</param-value>

</context-param>
<servlet>

<servlet-name>office</servlet-name>
<servlet-class>office</servlet-class>
<init-param>

<param-name>FileName</param-name>
<param-value>File 1.txt</param-value>

</init-param>
</servlet>

<servlet-mapping>
<servlet-name>office</servlet-name>
<url-pattern>/office</url-pattern>

</servlet-mapping>

3. Sart the web browser.
4. Type the following URL

http://localhost:8080/office

Figure 8.6 shows the screen of the browser, while Fig. 8.7 shows the screen of
server.

Figure 8.6. Screen of browser.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Global Parameters 99

Figure 8.7. Screen of browser.

8.3.4 home.java

The program shown in Fig. 8.8 is almost identical to office.java except the name
of the class. However, it picks up a different private file name from the web.xml
file.

8.3.5 Testing of home.java

1. Start your web server.
2. Insert the following blocks into the web.xml file.

<servlet>
<servlet-name>home</servlet-name>
<servlet-class>home</servlet-class>
<init-param>

<param-name>FileName</param-name>
<param-value>File 2.txt</param-value>

</init-param>
</servlet>

<servlet-mapping>
<servlet-name>home</servlet-name>
<url-pattern>/home</url-pattern>

</servlet-mapping>

3. Sart the web browser.
4. Type the following URL

http://localhost:8080/home
Figure 8.9 shows the screen of the browser, while Fig. 8.10 shows the screen
of server.

5. Compare the output of both office.java and home.java.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

100 8. Testing and Enhancements of Servlets

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class home extends HttpServlet
{

String GlobalFile;
String LocalFile;
public void init() throws ServletException
{

System.out.println(′′*** home program started ***′′);
ServletConfig cfg = getServletConfig();
LocalFile= cfg.getInitParameter(′′FileName′′);
System.out.println(′′Local value: ′′+LocalFile);

ServletContext global = getServletContext();
GlobalFile=global.getInitParameter(′′global′′);
System.out.println(′′Global value:′′+GlobalFile);

}

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException
{

PrintWriter output=response.getWriter();

output.println(′′<html>′′);
output.println(′′<head>′′);
output.println(′′<title> home</title>′′);
output.println(′′</head>′′);
output.println(′′<body>′′);
output.println(′′<h1>′′);
output.println(′′Globle File: ′′+GlobalFile);
output.println(′′
′′);
output.println(′′Local File: ′′+LocalFile);
output.println(′′</h1>′′);
output.println(′′</body>′′);
output.println(′′</html>′′);
output.close();

} // end of method

public void destroy()
{

System.out.println(′′destroy method of home called′′);
}

}

Figure 8.8. home.java

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Synchronization 101

Figure 8.9. Screen of browser—home.java

Figure 8.10. Screen of server—home.java

8.4 Synchronization

A web server creates a thread of the servlet to handle a browser’s request. Multiple
threads can be created at the same time. The advantage is that the creation of
threads is handled automatically by the server. We do not need to code it in the
servlet. On the other hand, this feature could be a problem for some applications.

Let us consider the following examples:

� A client sends a number to the servlet.
� The servlet adds the number to the variable ‘sum’.

The value of ‘sum’ might not be correct if we allow multiple threads to update
the variable ‘sum’ at the same time. Locking mechanism is required, and it can be
achieved by synchronization.

Syntax of the synchronization is:

public class ExampleServelt extends HttpServlet
{

Declare your variable here (e.g. sum)
.
public void init() throws ServletException

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

102 8. Testing and Enhancements of Servlets

{
initialise your variable here (e.g. sum=0;)
.

}

public void doGet(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException
{

do something here
.
synchronized (this)
{

obtain input
update your variable here (e.g. sum=sum+newNumber;)

}
. .
assemble a web page for the client

} // end of doGet method

public void destroy()
{

write the variable to disk, if necessary
}

}

A variable is initialized in the init() method. The synchronized keyword restricts
multiple accesses to the block in the doGet method. In other words, only one thread
is allowed at a time to access selected statements in a servlet.

There are three ways to synchronize a servlet:

� Synchronization of a block.

synchronized (this)
{

.

.
}

� Synchronization of a method.

public synchronized void NameOfMethod(. . . .)
{

do something here
.

}

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Tips to Speed up Testing 103

� Synchronization of a servlet.

public class NameOfServelt extends HttpServlet implement SingleThreadModel
{

do something here
.

}

Locking mechanisms must be implemented with care. They might cause the
following problems if synchronization is not designed properly:

1. It might become a bottleneck in the system. The performance of the network
will be degraded.

2. It might cause deadlock which is extremely difficult to debug in a distributed
system with a large number of computers.

8.5 Tips to Speed up Testing

If you are planning to develop a large project, you might consider the following
suggestions:

� A good IDE will be a useful tool. Some of them are freeware and can be down-
loaded from various websites.

� Always try to use one computer to test your programs in the initial test, if
possible. A computer can play the role of server and client simultaneously. If
your computer has enough memory, you can even start several web servers
and web browsers at the same time. In this way, you do not need to worry
about cables, router problems, firewalls, etc., in your first test. Of course, you
still need to test it with two or more computers later if your first test is suc-
cessful. You cannot test the performance of the network with one computer
either.

� Even if all computers are installed in the same room, it is still troublesome to
move from one keyboard to the others. An inexpensive switch box will allow
you to control several computers with one single set of monitor, mouse and
keyboard.

� A switch box is good for a small number of computers. Your room will be full
of cables if you have many computers. It is also a very time-consuming exercise
if you want to move computers to a new place after the installation. ‘Remote
control’ function is a better alternative if the operation systems of your computers
(e.g., Microsoft XP) support this function. Note that ‘telnet’ allows users to login
remotely to Unix or Linux machines. There are some public domain software
packages (e.g., UltraVNC), which can perform similar functions. Certainly there
is a trade-off for this method. The speed is slower as the remote computer
needs to transfer its screen image to your control computer. It might distort

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

104 8. Testing and Enhancements of Servlets

the experiment results if you are testing the performance of the programs or
settings.

� Use a network drive to store your programs if all computers are on the same
network. It saves a lot of time when copying programs among computers.

� You need a lot of screen space if you are using the ‘remote control’ to test
programs on many computers. It is worthwhile to buy display cards that can
support dual monitors. That will definitely speed up your testing processes.
Buying two high-resolution monitors is a good investment as it will save a lot
of time in the testing phase.

8.6 Troubleshooting

We provide a checklist of common problems and actions as follows:

� Compile problems
◦ Check classpath.
◦ Make sure that directories of all jar files are in the classpath definition.
◦ Make sure that all jar and class files are in the right directories.

� Problem in invoking servlet
◦ Check port number.
◦ Check mappings in the web.xml.
◦ Make sure that the web server is running.
◦ Make sure that the compiled version of the servlet (i.e., the class file) is in the

right directory (i.e., WEB-INF\classes of the application directory).
◦ Check the typing of URL.

� New changes are not in effect
◦ Make sure that the ‘servlet reloading’ is on.
◦ Close and restart the server, if necessary.
◦ It will be useful to include a print statement in the init() and destroy() meth-

ods, even if they are not required in your system. These statements can
provide additional information so you can be sure that the reloading is in
effect.

◦ Click the ‘reload’ icon (for Netscape users) or ‘refresh’ icon (for Internet
Explorer users) on your browser.

◦ Make sure that the new version of the class is in the right directory.
� Display problem in the browser

◦ Check html pages with the following methods:
� For Internet Explorer users,

1. click view.
2. click source.

� For Netscape users,
1. click view.
2. click page source.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Troubleshooting 105

� Web server is not working (or not working properly)
◦ Check the correctness of configuration files.

Note that it is very easy to make mistakes in changing the settings in the con-
figuration files. Before you make any changes, prepare a backup copy. Tomcat
is very sensitive for errors (i.e., even error with only one single character) in
the configuration files. If anything goes wrong, you can recover from a previous
version.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

9
Power Server: Model 1

9.1 Introduction

We will present the detailed operations of the power server model in this chapter.
After reading this chapter, readers will be able to install a power server P2P net-
work to solve their problems. In order to demonstrate the operations, we need the
following two components:

� The model itself
� A problem that we want to solve.

A toy problem (i.e., a very simple problem without any practical value) is used
instead of a real life complex problem as an example in this book. There are several
advantages in using the toy problem:

� The programs can be kept as simple (with minimum number of lines) as
possible. It is easier for readers to understand small programs than large
programs.

� Readers can concentrate on learning how to set up the power model and do not
need to spend time in learning the problem itself.

� Readers can verify the correctness of the computer output easily when they
conduct their own experiments using the program codes in this book.

� Reader can modify the programs for their applications. It is easier to modify
a simple program than a complex program. The program files can be obtained
from the website of this book.

We have discussed the example of adding a large amount of numbers in
Section 3.4. We will use this example again as our application. To make it even
simpler, we will add sequential integers from 1 to n, where n is an integer greater
than 1. The equation is:

Sum =
n∑

1

i (9.1)

106

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Model Without Web Server—Model 1 107

Although it has no practical value—it is of course easier to get the answer with
a pocket calculator—we choose it as our example because

� everyone can understand the calculation easily. It can consume some computer
time if the computer adds the values one by one. If n is big enough, then we can
compare efficiencies of different configurations.

� the reader can verify the correctness of the answer provided by the computers.
The formula for the answer is:

Sum = n (a + l)

2
(9.2)

where a is the smallest number in the series and lis the largest number in the
series.

9.2 Model Without Web Server—Model 1

We start with the simplest model which can achieve parallel programming without
web server in this section. In the subsequent sections, we will improve the model
bit by bit until it can handle real-life applications.

Naturally, there are two parts in the model—the client and server programs. Let
us start with the server program first.

9.2.1 Server Program

The server program consists of three components as described in Fig. 9.1. The
server program waits until it receives a request from the client. It then creates a
thread, which communicates with the client. The thread will get a sub-task (i.e.,
a range of numbers in this case) from the client. The thread invokes the ‘add’

addServer

addServerThread

add timerFigure 9.1. Structure of server

program.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

108 9. Power Server: Model 1

module to perform the actual calculation. The answer is then transmitted to the
client.

9.2.1.1 addServer Module

Figure 9.2 shows the codes of addServer module. The following line listens to
the port 3333. This port number can be modified if 3333 is being used in the
computer.

Once a request for connection is received, it passes the control to the following
block:

while (listening)
{

.
}

Inside this block, a new thread is created to handle the request by the following
statement:

new addServerThread(serverSocket.accept()).start();

The variable ‘Thread id’ is used to record the number of requests received from
the client. It is increased by 1 every time a thread is created. This number provides
more information to the users for debugging purposes.

This module does not need to wait for the completion of the first thread before it
invokes a new one. In other words, it is possible to entertain requests from several
clients simultaneously. That is the advantage of using threads in this program. A
schematic diagram of this operation is shown on Fig. 9.3.

9.2.1.2 addServerThread

Figure 9.4 shows the code of this module. Its function is to get the sub-task from
the server. It then calculates and passes back the result to the client.

9.2.1.2.1 First ‘Try’ Block

In the first ‘try’ block, the program uses the following two statements to establish
the socket connection for input (in) and output (out).

out = new PrintWriter(addSocket.getOutputStream(), true);

in = new BufferedReader(new InputStreamReader(addSocket.getInputStream()));

9.2.1.2.2 Second ‘Try’ Block

The server receives four input messages from the client. For example, the user
wants to get the sum of the numbers from 1 to 10 with two servers. The client will

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

import java.io.*;
import java.net.*;
import java.util.*;
public class addServer

{
public addServer() {

try {
jbInit();

} catch (Exception ex) {
ex.printStackTrace();

}
}

public static void main (String[] args)
throws IOException

{
ServerSocket serverSocket = null;
boolean listening = true;

int Thread id=0;
Socket addSocket= null;

System.out.println(′′***′′);

Date start date=new Date();
System.out.println(start date);
try
{

serverSocket = new ServerSocket(3333);
}
catch (IOException e)
{

System.err.println(′′Could not listen on port: 3333.′′);
System.exit(-1);

}
while (listening)
{

try
{
System.out.println(′′waiting for Thread : ′′ + Thread id+′′ ******′′);
new addServerThread(serverSocket.accept()).start();
Thread id =Thread id + 1;
}
catch (IOException e)
{
System.err.println(′′accept failed′′);
}

} // end of while
} // end of method

private void jbInit() throws Exception {
}

}

Figure 9.2. addServer.java

109

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

110 9. Power Server: Model 1

Started
Create socket

Terminate

Failed

Listening
(port:3333)

request from
client

Accept() Create new
thread 2

Stop

Create new
thread 1

Create new
thread n

.

.

.

.

Figure 9.3. Operations of the addServer module.

divide the interval into two sub-tasks (i.e., 1 to 5 and 6 to 10). A server will get the
following messages:

1. Starting value and ending value of the numbers (1 and 5 in this case).
2. Since there are many servers in the network, the client will allocate an ID

number to each server (ID is 1 in this case).
3. The whole internal of the problem (10 in this case).
4. The total number of servers in the system (2 in this case).

Items 2 to 4 are not required for this calculation. However, it will be useful for
calculations of a more complex problem. It will provide information for debugging
in the development phase.

In the second ‘try’ block, the program gets these messages with the following
statement:

fromRemote = in.readLine();

The first message is somehow more complicated than others as it consists of
two numbers—the beginning value and the ending value. These two values are
transmitted as a string. Functions of StringTokenizer are used to extract the numbers
and convert them back to numerical values. The statements for this operation are

StringTokenizer tokens = new StringTokenizer(fromRemote);
startPosition= Double.valueOf(tokens.nextToken()).doubleValue();
endPosition= Double.valueOf(tokens.nextToken()).doubleValue();

The sequence of messages between server and client is presented in Fig. 9.5.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Model Without Web Server—Model 1 111

import java.io.*;
import java.net.*;
import java.util.*;
import java.net.*;
public class addServerThread extends Thread
{

Socket addSocket=null;
public addServerThread (Socket addSocket)

throws IOException
{

this.addSocket=addSocket;
String fromRemote= ′′ ′′;
String fromUser= ′′initial value′′;
double startPosition=0.0,endPosition=0.0;
int interval=0;
int totalProcessor=0;
int Thread id=0;
Date start date=new Date();
System.out.println(start date +′′ Calculation Started′′);
PrintWriter out =null;
BufferedReader in=null;
try
{
out = new PrintWriter(addSocket.getOutputStream(), true);
in = new BufferedReader(new InputStreamReader(

addSocket.getInputStream()));
} // END TRY
catch (IOException e)

{
System.out.print (′′io exception in input/output′′);

}
//------------------------------------- get data --------------
try
{
fromRemote = in.readLine();
StringTokenizer tokens = new StringTokenizer(fromRemote);
startPosition= Double.valueOf(tokens.nextToken()).doubleValue();
System.out.println(′′start position :′′+ startPosition);
endPosition= Double.valueOf(tokens.nextToken()).doubleValue();
System.out.println(′′end position :′′+ endPosition);

// ************************ send information to client ******************
fromUser = Double.toString(startPosition);
out.println(fromUser);
fromUser = Double.toString(endPosition);
out.println(fromUser);
// get ID
if ((fromRemote = in.readLine()) != null)

System.out.print(′′number of remote thread: ′′+ fromRemote);

Thread id = Integer.parseInt(fromRemote);

Figure 9.4. addServerThread

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

112 9. Power Server: Model 1

if ((fromRemote = in.readLine()) != null)
{
interval=Integer.parseInt(fromRemote);
System.out.print(′′ interval: ′′+interval); // get interval
}

if ((fromRemote = in.readLine()) != null)
{
totalProcessor = Integer.parseInt(fromRemote);
System.out.println(′′ total no. of processor: ′′+ totalProcessor);
// get no of processor
}

} // END TRY
catch (IOException e)

{
System.out.print (′′io exception in socket input/output′′);
}

// **************************add operations ***********
try
{

System.out.print(′′waiting for ′go ahead′ signal from Client ′′);
// get go ahead signal
if ((fromRemote = in.readLine()) != null)

{
timer t =new timer();
t.start();
add getSum= new add((long) startPosition, (long) endPosition);
long sum=getSum.adding();
t.elasp(′′It take : ′′);
fromUser=Long.toString(sum);
out.println(fromUser);

}
}
catch (IOException e)
{

System.out.print(′′Exception in reading from Server′′);
}

try
{

out.close();
in.close();
addSocket.close();

}
catch (IOException e)
{

System.out.print (′′io exception in CLOSING′′);
}

} // end of method
}

Figure 9.4. (Continued)

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Model Without Web Server—Model 1 113

Server Client

Starting value and
ending value

ID

Interval

Total no. of servers
 in the system

‘Go ahead’ signal

Answer of sub-task

Figure 9.5. Sequence of

messages.

9.2.1.2.3 Third ‘Try’ Block

The first statement in the block is:

if ((fromRemote = in.readLine()) != null)

It waits for a ‘go ahead’ signal from the client. The client issues this signal
when all servers receive the sub-tasks. This signal will synchronize the calculation
process of servers and enable us to measure the time of calculation only. In other
words, servers will start calculation only when all servers get a sub-task from the
client. If such measurement is not required, this synchronization can be removed
from this program.

The actual calculation is performed in add.java class (Fig. 9.6).

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

114 9. Power Server: Model 1

/*
adding numbers
*/
class add
{
long startPosition,endPosition;
add(long start,long end)
{

startPosition=start;
endPosition=end;

}

long adding()
{

long sum=0;
System.out.println(′′start=′′+startPosition+′′ end=′′+endPosition);
for(long i=startPosition ; i<= endPosition ;i++)

{
for (int j=0;j<100000;j++) {int temp=j*j;}; // this is a delay loop
sum=sum+i;

}
System.out.println(′′\nsum=′′+sum);
return sum;

}

}
// end of class

Figure 9.6. add.java

The following statements are used to invoke this module and get back the answer.

add getSum= new add((long) startPosition, (long) endPosition)
long sum=getSum.adding();

In order to measure the time of this process, a class timer is used. The code of
this class is presented in Fig. 9.7. Inside the program, it can be invoked using the
following statements:

timer t =new timer();
t.start();

. Something you want to measure here

t.elasp(′′It take : ′′);

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

//------------- timer to handle time -----------
// require java.util.Date to run
// additional varible start time and end time is used so that it will be easier
// to be understood
import java.util.Date;
class timer
{

long start time,end time;
float differn;
Date start, end;

timer()
{
start = new Date();
start time=(System.currentTimeMillis());
}

void start()
{
start time=System.currentTimeMillis() ;
}

void mark()
{

end time=System.currentTimeMillis() ;
}

void cal diff()
{

mark();
differn =(float) (end time - start time)/1000;

}

void elasp()
{

cal diff();
System.out.print(′′elsaped second : ′′+differn+′′sec.\n′′);

}

void elasp(String msg)
{

cal diff();
System.out.print(msg +′′ ′′+ differn + ′′sec.\n′′);

}

}

Figure 9.7. timer.java

115

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

116 9. Power Server: Model 1

The first statement of this block creates an object t from a class timer. The
second statement calls the function start() and the clock will start to tick. The last
statement will invoke the function elasp() and stop the recording. The computer
then prints ‘It take xxx seconds’.

9.2.1.2.4 Last ‘Try’ Block

The statements in this block close the socket, input and output streams. The thread
will then be terminated.

9.2.1.2.5 Sequence of Operations

The operations are presented in Fig. 9.8.

Create threads

Get sub-tasks
from client

Wait for ‘go-
ahead’ signal

Add numbers

Transmit answers
to client

Terminal the
thread

Figure 9.8. Operations of the server.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Model Without Web Server—Model 1 117

addClient

addClientThread readIpFile

shareObjtimer share

Figure 9.9. Overall structure of the client program.

9.2.2 Client Program

The client receives input data from the user. It picks up the IP addresses of the
servers from a local file. A job from the user is divided into sub-tasks. One thread
is created to handle one sub-task. Each thread passes a sub-task to one server and
collects the answer from it. The overall structure is shown in Fig. 9.9.

9.2.2.1 addClient Module

This module accepts the following four parameters from the user:

� Number of severs in the systems (e.g., two).
� Interval of the series (e.g., 10 if the user wants to add the numbers from 1 to 10).
� File name which holds the IP address of the severs (e.g., ip.txt).
� Debug indicator. The value is 1 if the user wants to turn on this mode. The program

will print out more messages useful for debugging. This field is optional.

If a user forgets the parameter, he can type ‘java addClient’ and the system will
print an instruction on the screen to remind user the position of each parameter as
in Fig. 9.10.

For example, the user wants to get the sum of the numbers from 1 to 10 with
two servers. The command is ‘java 2 10 ip.txt’, where ip.txt is a file name.

The ip.txt is a text file. The lines shown in Fig. 9.11 are the contents of an
example file with two IP addresses.

Figure 9.10. Output of addClient to remind user.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

118 9. Power Server: Model 1

Figure 9.11. Contents of ip.txt file.

In Fig. 9.11, two is the number of IP addresses in the files. The IP addresses are
in lines 2 and 3. The user can edit this file according to his/her configuration with
any text editor. If you do not know the IP addresses of your computers, you can
type ‘ipconfig’ in DOS. Figure 9.12 is the response from computer.

The client divides the job into sub-tasks according to number of servers in the
system. The sub-tasks are stored in an array. For example, we need to calculate
the sum of 1 to 10 using two servers. The sub-task array is presented in Fig. 9.13.

The creation of sub-tasks is handled by the following block:

for (int i=0;i< x.length;i=i+2)
{

if (i==0)
x[i]=1;

else
x[i]= x[i-1]+1;

if ((i+2)==x.length)
x[i+1]=endPosition;

else
x[i+1]=x[i]+width-1;

}

We create two objects to control the synchronization of threads with the follow-
ing statements:

Share answer = new Share(totalProc,debug); // control answer update
ShareObj mToken = new ShareObj(totalProc,debug);

Each thread collects the answer of a sub-task from one server and updates the
total. As it is possible that two threads need to update simultaneously, the object

Figure 9.12. IP address.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Model Without Web Server—Model 1 119

6 10

Starting
value

Ending
value

Starting
value

Ending
value

First sub-task Second sub-task

51

Figure 9.13. Array of sub-tasks.

‘answer’ is used to control the synchronization. Only one thread is allowed to
update.

We want to know the exact time for transmission and calculation. The object
‘mToken’ is used to count the number of connections. The actual connections
are done by the threads. When the number of connection equals the number of
servers, a ‘go ahead’ signal will be sent to all servers. Although there are many
threads in the system, the ‘answer’ and ‘mToken’ objects can be shared by all of
them.

The following two lines read the IP file and store it in an array ip[].

String ip[]=new String[50];
readIpFile reader= new readIpFile(ipFile,ip);

A thread is created by the following statement:

for (int i=1;i<=totalProc;i++)
new addClientThread(ip[i-1],x, ,i,totalProc,answer,mToken,debug).start() ;

The following two statements control the synchronization.

mToken.allConnected(); // transmission to all computers completed
answer.setGoAhead(); // send a go ahead signal to all thread

The source codes of the addClient module are presented in Fig. 9.14.

9.2.2.2 addClientThread Module

The source codes of this module are presented in Fig. 9.15. This module establishes
connection with servers. It then sends the sub-task and related information to the
server as described in Fig. 9.5. It collects the answer from the server and updates
the total.

The first ‘try’ block creates the socket connection and prepares for input and
output. Port 3333 is used for communication. If you modify the port number

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

120 9. Power Server: Model 1

import java.net.*;
import java.io.*;
public class addClient {

public static void main(String[] args) throws IOException {
int Thread id=1;
int totalProc =0;
timer t = new timer();
// ************ get parameter from command argument *******
if (args.length >= 1)

{
totalProc = Integer.parseInt(args[0]);
System.out.println(′′number of processor :′′ + totalProc);

}
else
{

System.out.println(′′ number of processor, number of interval′′);
System.out.println(′′ , name of IP file, debug indicator′′);
System.exit(-1);

}
long n= Integer.parseInt(args[1]); // no. of interval
boolean debug = false;
String ipFile= ′′ip.txt′′;
String hostIp=′′localhost′′;
if (args.length >=3) ipFile= args[2];
if (args.length >=4)

if (Integer.parseInt(args[3])==1) debug=true;
long startPosition =0;
long endPosition =n;
double x[]= new double[totalProc*2];
long width=endPosition/totalProc;
// ****** dividing job into sub-tasks *****************
for (int i=0;i< x.length;i=i+2)

{
if (i==0)

x[i]=1;
else

x[i]= x[i-1]+1;
if ((i+2)==x.length)

x[i+1]=endPosition;
else

x[i+1]=x[i]+width-1;
}

if (debug) System.out.print(′′ x[i]=′′);
for (int j=0;j< x.length;j++)

{
if (debug) System.out.print (′′ ′′+x[j]);

}

Figure 9.14. addClient.java

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Model Without Web Server—Model 1 121

if (debug) System.out.println(′′ size of array = ′′ + x.length);
// ****************** Create object for synchronization ********
Share answer = new Share(totalProc,debug); // control answer update
ShareObj mToken = new ShareObj(totalProc,debug);
String ip[]=new String[50];
readIpFile reader= new readIpFile(ipFile,ip);
timer total =new timer(); // timer for transmission + calculation
total.start();
// *************************** create Threads ***************
for (int i=1;i<=totalProc;i++)

new addClientThread(ip[i-1],x,
n,i,totalProc,answer,mToken,debug).start() ;

if (debug) System.out.println(′′wait for connection to complete ′′);
mToken.allConnected(); // transmission to all computers completed
if (debug) System.out.print(′′start to call setGoAhead′′);
answer.setGoAhead(); // send a go ahead signal to all thread
timer t1= new timer(); // timer for calculation only
t1.start();
System.out.println(′′********* Answer: ′′+(long)answer.getAnswer()+

′′*********′′);
total.elasp(′′total time calculation + transmission :′′);
t1.elasp(′′Total calculation takes : ′′);
System.out.println(′′program terminated′′);

} // end of main method
}

Figure 9.14. (Continued)

in the server program, you must also modify the port number in this module
accordingly.

try
{

powerSocket = new Socket(site, 3333);
System.out.println(′′connecting site ′′+Thread id+′′ : ′′+ site);
out = new PrintStream(powerSocket.getOutputStream());
in = new DataInputStream(powerSocket.getInputStream());

}

A sub-task is extracted from the task array and converted to a string. The string
is distributed to the server. This process is performed by the following statements:

for (int i=first; i < last;i++)
{

arrayBuffer.append(x[i]+′′ ′′);
}

out.println(arrayBuffer);

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

122 9. Power Server: Model 1

import java.net.*;
import java.io.*;
import java.util.*;
public class addClientThread extends Thread {

private Socket socket = null;
double x[];
int Thread id;
int totalProcessor;
boolean debug;
String msg;
Share answer;
ShareObj mToken;
long interval;
boolean Done= false;
PrintStream out=null ;
BufferedReader in =null;
Socket powerSocket;
public addClientThread(String site, double[] y, long interval,

int id, int totalProc,Share answer,
ShareObj mToken,boolean debug)

{
super(′′ClientThread′′);
if (debug) System.out.println(′′add Client Theard′′);
this.Thread id =id;
this.x =y;
this.totalProcessor = totalProc;
this.mToken = mToken;
this.answer=answer;
this.debug=debug;
this.interval= interval;
// *********************** try to connect now *************
try
{

powerSocket = new Socket(site, 3333);
System.out.println(′′connecting site ′′+Thread id+′′ : ′′+ site);
out = new PrintStream(powerSocket.getOutputStream());
in = new BufferedReader(new InputStreamReader(

powerSocket.getInputStream()));
}
catch (UnknownHostException e)
{

System.err.println(′′Don’t know about host: ′′+site);
System.exit(1);

}
catch (IOException e) {

System.err.println(′′Couldn’t get I/O for the connection to: ′′+site);
System.err.println(′′ shutting down′′);
return;

}

Figure 9.15. addClientThread class

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Model Without Web Server—Model 1 123

if (debug) System.out.println(′′connection ok′′);
}
public void run()
{
timer t = new timer();
try

{
String inputLine, outputLine;

int first = (Thread id -1) * (x.length /totalProcessor);
if (debug) System.out.print(′′*************** first=′′ +first);
int last = (Thread id) * (x.length /totalProcessor);
if (Thread id > totalProcessor)
{

System.out.println(′′conection not created′′);
System.exit(1);

}
if (debug) System.out.print(′′connection to site ′′ + Thread id);
if (debug) t.elasp(′′ takes:′′);
if (debug) System.out.println(′′Start to transfer for ′′ + Thread id);
t.start();
StringBuffer arrayBuffer = new StringBuffer(last*8);
if (debug) System.out.print(′′buffer created ′′);
for (int i=first; i < last;i++)
{

arrayBuffer.append(x[i]+′′ ′′);
}
out.println(arrayBuffer); // transmit to power server
if (debug) System.out.print(′′Transmission of site ′′ + Thread id);
if (debug) t.elasp(′′ takes:′′);
timer t2= new timer();
t2.start();
if (debug) System.out.println(′′T id=′′+Thread id+ ′′ done= ′′ +Done);
//

// ****************** get back information *********************
// make sure power server get the right data
String localMin=′′ ′′;
String localMax=′′ ′′;
if (debug) System.out.println(′′wait for server’s first transmission′′);
if ((inputLine = in.readLine()) != null)

localMin = inputLine;
if (debug) System.out.println(′′wait for server’s seond transmission′′);
if ((inputLine = in.readLine()) != null)

localMax = inputLine;
System.out.println(′′site:′′+Thread id+ ′′ Min= ′′ +localMin+′′ Max=

′′ +localMax);
// ****** send other information to server **************
mToken.increaseConnection(); // increase number of connection
outputLine = String.valueOf(Thread id);
out.println(outputLine);

Figure 9.15. (Continued)

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

124 9. Power Server: Model 1

outputLine = String.valueOf(interval);
out.println(outputLine);
if (debug) System.out.println(′′interval=′′+interval);
outputLine = String.valueOf(totalProcessor);
out.println(outputLine);
double subAnswer=0.0;
if (debug) System.out.println(′′id=′′+Thread id+ ′′go ahead ′′);
out.println(′′go ahead′′);
if (debug) System.out.println(′′id=′′+Thread id+ ′′wait for answer ′′);
// get the answer from server ***********************

if ((inputLine = in.readLine()) != null)
subAnswer= Double.valueOf(inputLine).doubleValue();

t2.elasp(′′id=′′+Thread id +′′ time for cal+tran =′′);
// update total Answer ********
if (debug) System.out.println(′′id=′′+Thread id+ ′′get answer ′′);
answer.updateAnswer(subAnswer);
System.out.println(′′*** id=′′+Thread id+ ′′ sub-task answer= ′′

+(long)subAnswer);
if (debug) System.out.println(′′id=′′+Thread id+ ′′ done3= ′′ +Done);

out.close();
in.close();
powerSocket.close();
} // end of try

catch (IOException e)
{

e.printStackTrace();
}

}
}

Figure 9.15. (Continued)

The following lines receive the feedback information from the server so that the
user can verify the correctness of the transmission.

//
// ****************** get back information *********************
// make sure power server get the right data
String localMin=′′ ′′;
String localMax=′′ ′′;
if (debug) System.out.println(′′wait for server’s first transmission′′);
if ((inputLine = in.readLine()) != null)

localMin = inputLine;
if (debug) System.out.println(′′wait for server’s seond transmission′′);
if ((inputLine = in.readLine()) != null)

localMax = inputLine;
System.out.println(′′site:′′+Thread id+ ′′ Min= ′′ +localMin+′′ Max=
′′ +localMax);

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Model Without Web Server—Model 1 125

The following statement increases the number of connections in the object
mToken:

mToken.increaseConnection(); // increase number of connection

The following lines send other messages to the server according to Fig. 9.5:

outputLine = String.valueOf(Thread id);
out.println(outputLine);
outputLine = String.valueOf(interval);
out.println(outputLine);
if (debug) System.out.println(′′interval=′′+interval);
outputLine = String.valueOf(totalProcessor);
out.println(outputLine);
double subAnswer=0.0;
if (debug) System.out.println(′′id=′′+Thread id+ ′′go ahead ′′);
out.println(′′go ahead′′);
if (debug) System.out.println(′′id=′′+Thread id+ ′′wait for answer ′′);

// get the answer from server ***********************
if ((inputLine = in.readLine()) != null)

The following statements get the answer from server:

if ((inputLine = in.readLine()) != null)
subAnswer= Double.valueOf(inputLine).doubleValue();

Finally the total will be updated by calling the method ‘updateAnswer’ with the
following statement:

answer.updateAnswer(subAnswer);

A schematic diagram of the communications between server and client is dis-
played in Fig. 9.16.

9.2.2.3 readIpFile Module

The source codes of this module are presented in Fig. 9.17. The logic of this module
is quite simple. It reads all addresses in the address file and stores them in an array.
It then returns the control to the calling module.

9.2.2.4 Share Module

The coding list of this class is presented in Fig. 9.18. In addition to the construction
method, there are three other methods:

� setGoAhead—It informs all threads which are waiting to go ahead by invoking
the notifyAll() statement.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

126 9. Power Server: Model 1

addClient

addServerThread

Answer

Server computer Client computer Server computer

Answer

addClientThread
(1)addServerThread addClientThread

(2)

addServer

Createthreads

Sub-task Sub-task

shareObj share

addadd

addServer

readIpFile IP File

Figure 9.16. Schematic diagram of the communication.

� updateAnswer—It updates the total. Only one thread is allowed to update at one
time.

� GetAnswer—It returns the grand total to the calling program.

9.2.2.5 ShareObj Module

The source code of this module is presented in Fig. 9.19. There are only two
methods (excluding the constructor) in this class.

� increaseConnection—It increases the internal counter by 1 if the connection and
transmission of a thread is successful. This function is for synchronization as
discussed in previous sections.

� allConnected—It remains in a ‘wait’ state until the number of connection equals
to the number of servers in the system.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Model Without Web Server—Model 1 127

import java.io.*;
public class readIpFile
{

String ipFile;
String ip[];
String hostIp;
int rec no=0;
public readIpFile(String ipFile, String ip[])
{

this.ipFile=ipFile;
this.ip=ip;
try
{
BufferedReader in = new BufferedReader (

new InputStreamReader (new FileInputStream(ipFile)));
rec no = Integer.parseInt(in.readLine());
for (int i=0 ; i<=rec no-1 ; i++)

{
ip[i] = in.readLine();
}

in.close();
} // end of try
catch (EOFException e)
{

System.out.println (′′ error′′);
}
catch (FileNotFoundException e)
{

System.out.println(′′file not found ′′);
return;
// System.exit(-1);

}
catch (IOException e)
{

System.out.println(′′ IO errors ′′);
}
boolean connected = false;

} // end of invoke method
public int getNumServer()
{

return rec no;
}

}

Figure 9.17. readIpFile class

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

class Share {
private boolean go = true;
boolean debug = false;
int totalProcessor=0;
int doneProcessor=0;
double answer=0.0;
public Share(int totalProcessor,boolean debug)
{

this.debug= debug;
this.totalProcessor = totalProcessor;

}

public synchronized void setGoAhead()
{

if (debug) System.out.println(′′Share called go: ′′ + go);

while (!go)
{

try
{

wait();
}
catch (InterruptedException e)
{

System.err.println(′′Exception: ′′ + e.toString());
}

}
if (debug) System.out.println(′′Share setGoAhead go: ′′ + go);
go = false;
notifyAll();

}

public synchronized void updateAnswer(double ans)
{

answer =answer+ans;
doneProcessor++;
notifyAll();

}
public synchronized double getAnswer()

{
if (debug) System.out.println(′′waiting for answer by Server′′);
while (doneProcessor != totalProcessor)

{
try
{

wait();
}
catch (InterruptedException e)
{

System.err.println(′′Exception: ′′ + e.toString());
}

}
return answer;
}

}

Figure 9.18. share.java

128

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

class ShareObj
{

boolean Done = false;
private int totalProcessor;
private int totalAccess;
private boolean free =true;
boolean debug;
boolean connected=false;
public ShareObj(int i,boolean debug)
{

totalProcessor=i;
this.debug=debug;
totalAccess= 0;

}
public synchronized void increaseConnection()
{

if (debug) System.out.println(′′Share obj free: ′′ + free
+′′ no. of Processor: ′′+

totalProcessor);
while (!free)
{

try
{

wait();
}
catch (InterruptedException e) {

System.err.println(′′Exception: ′′ + e.toString());
}

}
free = false;
Done = true;
totalAccess++;
if (totalAccess == totalProcessor)

{
totalAccess =0;
connected=true;
if (debug) System.out.println(′′Share obj ′′ + ′′access:′′+totalAccess);
}

free = true;
notify();

}

public synchronized void allConnected()
{

while (!connected)
{

try
{

wait();
}
catch (InterruptedException e)
{

System.err.println(′′Exception: ′′ + e.toString());
}

}
}

}

Figure 9.19. shareObj.java

129

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

130 9. Power Server: Model 1

Figure 9.20. Screen of the server in waiting state.

9.3 First Test

You can use only one computer to run your first test. If you are not familiar with
client-server programming, I will recommend you to use one computer for the first
test. A computer can be both server and client concurrently. You must start the
server program first before you run the client program.

1. You start the server program by typing the following command in DOS:

java addServer

The computer will be in a wait state as in Fig. 9.20.
2. Start the client program by typing the following command in anther DOS ses-

sion.

java addClient 1 10 local.txt

The first parameter ‘1’ indicates that there is only one server in the system. The
system will add the number from 1 to 10. There are only 2 lines in the ‘local.txt’ file:

1
localhost

The ‘1’ in the first line indicates there is only one address in the whole file.
‘localhost’ is the synonym of the IP address of your local computer.

The local.txt file enables you to access your own local computer without speci-
fying its IP address. You can see the result in both windows: Fig. 9.21 is the screen
of the server window, while Fig. 9.22 is the screen of the client window.

Figure 9.21. Screen of server window.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Second Test 131

Figure 9.22. Screen of client window.

After the successful computation, the server’s thread will be ready for another
request from the client as displayed in Fig. 9.21.

9.4 Second Test

If the first test is successful, you are ready to start the second test with two or more
computers.

1. Copy all programs to both computers.
2. Type ‘java addServer’ in DOS in both computers.
3. Obtain the IP addresses of both computers.
4. You can use a third computer or use one of the two computers as client.

� Edit the ip.txt and replace the IP addresses with your server computers.
� Type ‘java addClient 2 1000 ip.txt’.

where 2 is total number of servers and 1000 is the range 1 to 1000.

The screen of the client is displayed in Fig. 9.23.

Figure 9.23. Screen from client of test 2.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

132 9. Power Server: Model 1

Figure 9.24. Normal ping test.

The answer for the sub-task from first server is 125250, while the answer from
second server is 375250. You can verify the final 500500 with the formula in
Eq. (9.2).

9.5 Troubleshooting

If you have problems, try to fix the problems with the following methods:

1. Make sure that the connection is fine by typing ‘ping xxxxxxx’ in DOS, where
xxxxxxx is the IP of the remote computer.

e.g., ping 192.168.1.3

You will get the following messages (Fig. 9.24) if the connection is fine.
You will get the timeout messages as in Fig. 9.25 if there are problems in the
connection. You need to check the cable connection and configuration of your
computer system before you proceed any further.

2. If the connection is fine in the ‘ping’ test and the programs still do not work, it
is possible that port 3333 is being used by some other program in your system.

Figure 9.25. Connection problems.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Further Tests 133

Change the port number in the addClient and addServer program from 3333 to
other number.

3. If you are using any firewall, it will block the port 3333. You should invoke the
firewall and release the port 3333 (TCP).

9.6 Further Tests

If the second test is fine, you can try further tests, adding more computers, and
using different combinations until you understand the operations. You will then be
able to modify the programs to solve your real-life problems.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

10
Power Server: Model 2

10.1 Introduction

The major advantage of the model in Chapter 9 is its ease of implementation. All
you need is a JDK in the computer. Additional software packages are not required.
This model is perfect for small-scale networks and where every computer is under
your control. It is easy to debug the system in the development phase so it is good
for beginner.

However, there is a major drawback in this model—you need to invoke a server
program in each computer manually. If there are a large number of computers inside
the system, it will be very time consuming. A simple and inexpensive way to invoke
a program in remote computers is required. Although there are a large number of
methods (such as RMI, COBRA, etc.) for this purpose, they are difficult to use
for programmers without much networking experience. In some cases, additional
expensive software packages are required.

Web servers will be able to solve this problem easily. Remote servlet programs
can be invoked easily by an HTTP message. This method provides the following
advantages:

� There is a large number of web servers. Most of them are free and small (in terms
of memory and disk space required). Owners of peer computers will be happy
to install this piece of additional software.

� The interface methods of web server and servlets are standards. That means
each owner of a peer computer can choose different web server. Owners of peer
computers do not need to trust any single party. The P2P will work nicely with
heterogeneous web servers inside the network.

� The life cycle is well defined. It will be easy for programmers to develop and
maintain the servlet.

� The web server will automatically pick up the new servlet on the hard disk
whenever there is any update. The user does not need to close down and restart
the web server.

134

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Power Server with Web Server—Model 2 135

invokeServer

readIpFile

addServlet

HTTP to
invoke

addServlet

Response

Server computer Client computer Server computer

HTTP to
invoke

addServlet

Response

startServlet
(1)

addServlet
startServlet

(2)

createThreads

Figure 10.1. Invoking the servlet of remote computer.

10.2 Power Server with Web Server—Model 2

The model can be modified easily to work with any web server. A new program for
the client is written to send HTTP messages to invoke servlets in server computers.
A schematic diagram is presented in Fig. 10.1. This program reads the IP addresses
in a local file. It then creates a thread to invoke servlets from remote servers by
sending them HTTP messages.

10.2.1 invokeServer Module

The source codes of this module are presented in Fig. 10.2. The operations of this
module are quite straightforward. It accepts the following two parameters from
the user:

� Number of server computers.
� Name of the file which stores the IP addresses—default value is ip.txt.

It reads IP addresses from the file and stores them in an array. It then creates
startServlet threads according to the first parameter with the following statements:

for (int i=0;i<totalProc;i++)
{
new startServlet(ip[i]).run();
}

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

136 10. Power Server: Model 2

import java.net.*;
import java.io.*;

public class invokeServer {
public static void main(String[] args) throws IOException {

int Thread id=1;
int totalProc =0;
timer t = new timer();
// ************ get parameter from command argument *******
if (args.length >= 1)

{
totalProc = Integer.parseInt(args[0]);
System.out.println(′′number of servers :′′ + totalProc);

}
else
{ System.out.println(′′ number of servers′′);

System.out.println(′′ , name of IP file ′′);
System.exit(-1);

}
String ipFile= ′′ip.txt′′;
// default file name
if (args.length >=2) ipFile= args[1];
String ip[]=new String[totalProc+1];
readIpFile reader= new readIpFile(ipFile,ip);
System.out.println(′′invoked ′′ + Thread id);
// *************************** ending operation ***************
timer t1= new timer();
t1.start();
for (int i=0;i<totalProc;i++)

{
new startServlet(ip[i]).run();
}

t1.elasp(′′********************************* It takes : ′′);
System.out.println(′′program terminated′′);

} // end of main method
}

Figure 10.2. invokeServer.java

Threads are used because each one of them can invoke a remote servlet inde-
pendently. They do not need to wait for the completion of other threads to begin
their tasks.

10.2.2 startServlet Module

This module calls the URL connect module to send the HTTP message to the
server. It will get a true value if the connection is normal, otherwise it will get a

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Power Server with Web Server—Model 2 137

import java.net.*;
public class startServlet extends Thread
{

String ip;
InetAddress hostIp;
public startServlet(String ip)
{

super (′′invokeServer′′);
this.ip=ip;
this.hostIp=hostIp;

}
public void run()
{

boolean connected = false;
try
{

InetAddress address = InetAddress.getLocalHost();
System.out.println(′′try to connect ′′+ip);
String urlString =′′http://′′

+ip+′′:8080/servlet/addServlet?site=′′+address;
connected =new URL connect(urlString).go();
if (connected)

System.out.println(′′connected :′′+ ip);
else

System.out.println(′′failed to connect ′′+ip);
}
catch (Exception e)
{

System.err.println(′′get error: ′′ + e);

}
} // end of run method

}

Figure 10.3. startServlet.java

false value from the URL connect module. The complete coding list is shown in
Fig. 10.3.

The name and IP address of the client computer are obtained by the following
line:

InetAddress address = InetAddress.getLocalHost();

The information of the client computer is sent to the server for debugging purposes.
It is embedded in the following line:

String urlString =′′http://′′ +ip+′′:8080/servlet/addServlet?site=′′+address;

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

138 10. Power Server: Model 2

import java.awt.*;
import java.io.*;
import java.net.*;

public class URL connect
{
String site;
boolean connected;

public URL connect(String site)
{

this.site=site;
}

public boolean go()
{

URL powerURL;
InputStream powerInputStream;
try

{
powerURL = new URL(site);

powerInputStream = powerURL.openStream();
}
catch (Exception e)
{

System.out.println(′′get error: ′′+ e);
return false;

}
return true;

} // runn

} //class URL connect

Figure 10.4. URL-connect.java

10.2.3 URL connect Module

This module (Fig. 10.4) takes the HTTP message from the calling module
(i.e., startServlet).

It returns a true value to the calling module if the connection is fine. The actual
connection is carried out by the following block:

try
{

powerURL = new URL(site);
powerInputStream = powerURL.openStream();

}

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Server Side Programs 139

listen

addServerThread

add timer

addServlet
Figure 10.5. Structure of

addServlet.

10.3 Server Side Programs

This servlet enables the user to invoke the addServer program (in Chapter 9) with
an HTTP message. The structure of this servlet is presented in Fig. 10.5.

10.3.1 addServlet

The constructor of this module invokes the listen module with the following block:

listenSocket= new listen();
listenSocket.setPriority(Thread.MIN PRIORITY);
listenSocket.start();

The constructor is executed only once even the client sends several HTTP mes-
sages to the server. However, the doGet() records the number of messages and
returns it to the client for future debugging purposes. The coding list is presented
in Fig. 10.6.

10.3.2 Listen Module

The listen module establishes a socket (in port 3333). Whenever it receives a request
from the client, an addServer thread will be invoked by the following statements:

while (listening)
{

try
{
System.out.println(′′tring to connect Thread : ′′ + Thread id);
new addServerThread(serverSocket.accept()).start();
System.out.println(′′connected Thread : ′′ + Thread id);
Thread id =Thread id + 1;
}

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

140 10. Power Server: Model 2

import java.io.*;
import java.net.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class addServlet extends HttpServlet
{

int Thread id=0;
int count =1;
listen listenSocket;
public void init(ServletConfig config) throws ServletException
{

super.init(config);

System.out.println(′′***′′);
Date start date=new Date();
System.out.print(start date);
listenSocket= new listen();
listenSocket.start();
System.out.println(′′*****list socket

called**************************′′);
}
public void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException
{

PrintWriter out=res.getWriter();
System.out.println(′′addServlet count=′′+count);
out.flush();
String line=′′request accepted′′;
out.println(line); //ending message
count++;
out.close();

} // end of method
public void destroy()
{

System.out.println(′′destroy method called′′);
}

}

Figure 10.6. addServlet.java

catch (IOException e)
{
System.err.println(′′accept failed′′);
}

} // end of while

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Phase 1 Testing—invokeServer Program 141

The server side programs in Chapter 9 are modified. The addServerThread, add
and timer module do not need any further modification. The coding list is presented
in Fig. 10.7.

10.4 Phase 1 Testing—invokeServer Program

You need a web server to test this module. If you have one server running on your
computer and it supports servlets, all you need to do is to install the servlet classes
in the appropriate folder. Again it is simpler to use one computer in the first test
even you have several computers.

10.4.1 Test 1

You can test the program by following these steps:

1. Copy the programs to the default servlet path.
2. Invoke the web server.
3. Type ‘java invokeServer 1 local.txt’ in DOS. The first parameter ‘1’ is the

number of servers in the system. One computer is used as both client and server
in this test. The results are displayed in Figs. 10.8 and 10.9. Figure 10.8 is the
screen of the server window, while Fig. 10.9 is the client window.

10.4.2 Troubleshooting

Check the following if you have any problems:

� Make sure that the web server is running.
� Check the port number of your web server. The default port is 8080 for

Tomcat. This number could be different if you are using other servers. Type
http://localhost:8080 to test this port.

� If you are not sure whether it is a server side or client side problem, you can
also test the servlet by typing the URL http://localhost:8080/servlet/addServlet
on your browser.

You will get the screen as shown in Fig. 10.10 on your browser if the server side
is working properly.

10.4.3 Test 2

In this test, you use several computers to test the programs in this chapter with the
following steps:

1. Install the addServlet programs in two computers (refer to step 1–5 of the
Section 10.4.2). Note that alternatively you can share the folder with other
computers; it will save a lot of time.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

142 10. Power Server: Model 2

import java.io.*;
import java.net.*;
import java.util.*;
public class listen extends Thread
{

Socket addSocket= null;
ServerSocket serverSocket = null;
boolean listening = true;
int count =1;
int Thread id;
int portNumber= 3333;
public listen()
{

System.out.println(′′listening started′′);
}
public void run()
{

Date start date=new Date();
System.out.print(start date);

try{
serverSocket = new ServerSocket(portNumber);
System.out.println(′′Add servlet init, started′′);

}
catch (IOException e)

{
System.err.println(′′Could not listen on port: ′′+ portNumber);
System.exit(-1);

}
while (listening)
{

try
{
System.out.println(′′trying to connect Thread : ′′ + Thread id);
new addServerThread(serverSocket.accept()).start();
System.out.println(′′connected Thread : ′′ + Thread id);
Thread id =Thread id + 1;
}
catch (IOException e)
{
System.err.println(′′accept failed′′);
}

} // end of while
} // end of method

}

Figure 10.7. listen.java

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Phase 2 Testing 143

Figure 10.8. Server window.

Figure 10.9. Client window.

Figure 10.10. Screen of the browser.

2. Start the Tomcat.
3. Check the IP addresses of your two servers.
4. Modify the ip.txt file with the IP addresses/.
5. Type ‘java invokeServer 2 ip.txt’ in DOS on a third computer. The second

parameter (‘2’) means two servers.

The contents of the ip.txt file in this test are

2
192.168.1.2
192.168.1.3

The window shown in Fig. 10.11 is the result of client side program. The screen
of both servers is presented in Fig. 10.12.

10.5 Phase 2 Testing

The advantage of this model is that client program can invoke the server side
program automatically. It will save a lot of time. A schematic diagram of the
operations is presented in Fig. 10.13.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Figure 10.11. Screen of client (with two servers).

Figure 10.12. Screen of both servers.

Server

Invoke web server

Invoke addServlet Run invokeServer

Listen at
port 3333

Run addClient
program

Invoke addServer
program

Send sub-task

Client

Calculate and
send

Collect resultsResult (sub-total)

Sub-task

Request

HTTP message

P
h

a
se

 1
P

h
a

se
 2

Figure 10.13. Sequence of operations.

144

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

Phase 2 Testing 145

Figure 10.14. Screen of client (phase 2).

Figure 10.15. Screen of the first server (phase 2).

Figure 10.16. Screen of the second server (phase 2).

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:8

146 10. Power Server: Model 2

10.5.1 Further Testing

If the test in Section 10.4.3 is successful, you are ready to start the phase 2 test.
Type the following command in your client computer:

java addClient 2 100 ip.txt

The grand total (5050) is displayed in the client computer as shown in
Fig. 10.14. The two sub-totals (1275 and 3775) are displayed in the servers’ screens
(Figs. 10.15 and 10.16).

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

11
Power Server: Model 3

11.1 Introduction

The models in Chapters 9 and 10 divide a task into n sub-tasks for a system with
n servers so we can maintain ‘load balance’. In other words, each server receives
one sub-task. The programs for these models are also simpler so they are good
for readers who do not have related experience in building these kinds of systems.
These designs are based on two assumptions:

� Every server has similar computing power. One computer is not much faster
than the others.

� Each server is reliable. A computer will not be shut down for a prolonged period.

These models are perfect if these assumptions are true as the overall comple-
tion time is minimized. However, sometimes these assumptions are not true. For
example, as hardware cost decreases rapidly, newly purchased computers will be
much faster than those purchased two years ago for the same amount of money
even in the same department. A faster computer will complete the sub-task much
earlier than a slower one and become idle while other computers are still working
on the sub-tasks. In other words, we cannot maximize the utilization of computer
powers inside the network. Thus, such designs are efficient only for homogeneous
systems with similar computers, and not for heterogeneous systems.

Computers connected by Internet are heterogeneous in terms of platforms, CPU
speed, communication speed, primary memory and disk spaces. Furthermore, we
cannot impose any centralized control to ensure that all servers are working prop-
erly. A new model is required if we are working on an application on the Intranet.

11.2 Power Server—Model 3

We will modify the programs in Chapter 9 in this model as it is easier to test. The
programs in Chapter 10 will be modified in later sections. The major differences
between this model and the counterpart in Chapter 9 are as follows:

147

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

148 11. Power Server: Model 3

� A task will be divided into m sub-tasks in the systems with n servers. ‘m’
is an integer much bigger than n (i.e., m >> n, where m and n are both
integers).

� More error-checking procedures are built into the programs so they will detect
whether a server is working normally. Sub-tasks will not be distributed to servers
not working properly. For example, the server might get shut down by the owner.
The programs are more robust at the cost of more complicated logic and bigger
size (in term of number of coding lines).

� Synchronizations are removed as different servers will get sub-tasks at different
times. Some time measurements are removed as they are not meaningful any
more. Note that in Chapters 9 and 10, the servers wait until every server gets a
sub-task before they start calculation.

� The communication costs of this model will be higher as the number of com-
munication messages is greater in this new model. In addition to the actual
exchanges of sub-task and answer between server and client, we need to con-
sider the overhead in establishing the communication socket which might be
extremely time consuming, particularly when these computers are in different
countries.

� Some communication messages in Chapter 9, which are not absolutely necessary
(but good for debugging) for the calculation, are removed.

11.3 Server Program of Model 3

There are minor modifications in the server program. The overall structure is pre-
sented in Fig. 11.1. Communication messages are minimized to only two following
messages:

� Sub-task (i.e., starting value and ending value) from client to server.
� Answer (i.e., the sub-total) from server to client after the calculation.

There are no changes in both add.java and timer.java modules. The source
codes of addServer2.java and addServerThread2.java are presented in Figs. 11.2
and 11.3.

addServer2

addServerThread2

add timer Figure 11.1. Structure of server

side program.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

Server Program of Model 3 149

import java.io.*;
import java.net.*;
import java.util.*;
public class addServer2
{

public static void main (String[] args)
throws IOException

{
ServerSocket serverSocket = null;
boolean listening = true;
boolean debug=false;
int Thread id=0;

System.out.println(′′**
*******′′);

if (args.length ==1) debug = true;
Date start date=new Date();
System.out.println(start date);
try
{

serverSocket = new ServerSocket(3333);
}
catch (IOException e)
{

System.err.println(′′Could not listen on port: 3333.′′);
System.exit(-1);

}
while (listening)
{

try
{
System.out.println(′′waiting for Thread : ′′ + Thread id+′′ ******′′);
new addServerThread2(serverSocket.accept(),debug).start();
Thread id =Thread id + 1;
}
catch (IOException e)
{
System.err.println(′′accept failed′′);
}

} // end of while
} // end of method

}

Figure 11.2. addServer2.java

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

150 11. Power Server: Model 3

import java.io.*;
import java.net.*;
import java.util.*;
import java.net.*;
public class addServerThread2 extends Thread
{

Socket addSocket=null;
boolean debug=false;
public addServerThread2 (Socket addSocket, boolean debug)

throws IOException
{

this.addSocket=addSocket;
this.debug=debug;
String fromRemote= ′′ ′′;
String fromUser= ′′initial value′′;
double startPosition=0.0,endPosition=0.0;
Date start date=new Date();
System.out.println(start date +′′ Calculation Started′′);
PrintWriter out =null;
BufferedReader in=null;
try
{
out = new PrintWriter(addSocket.getOutputStream(), true);
in = new BufferedReader(new InputStreamReader(

addSocket.getInputStream()));
} // END TRY
catch (IOException e)

{
System.out.print (′′io exception in input/output′′);
return;

}
//------------------------------------- get data --------------
try
{
fromRemote = in.readLine();
if (debug) System.out.println(′′remote input:′′+ fromRemote+′′********′′);
StringTokenizer tokens = new StringTokenizer(fromRemote);
startPosition= Double.valueOf(tokens.nextToken()).doubleValue();
endPosition= Double.valueOf(tokens.nextToken()).doubleValue();
if (debug)

{
System.out.println(′′start position :′′ + startPosition);
System.out.println(′′end position :′′ + endPosition);

}
} // END TRY

Figure 11.3. addServerThread2.java

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

Client Program of Model 3 151

catch (IOException e)
{

System.out.print (′′io exception in socket input/output′′);
}

// **************************add operations ***********
timer t =new timer();
t.start();
add getSum= new add((long) startPosition, (long) endPosition);
long sum=getSum.adding();
t.elasp(′′It take : ′′);
fromUser=Long.toString(sum);
out.println(fromUser);

try
{

out.close();
in.close();
addSocket.close();

}
catch (IOException e)
{

System.out.print (′′io exception in CLOSING′′);
}

} // end of method
}

Figure 11.3. (Continued)

11.4 Client Program of Model 3

The structure of this program is presented in Fig. 11.4. The followings are the
differences between Models 1 and 3:

addClient2

addClientThread2 readIpFile

share2timer

divide

Figure 11.4. Structure of the client side program.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

152 11. Power Server: Model 3

� There are three new modules i.e., addClient2.java (modified from addClient
.java), addClientThread2.java (modified from addClientThread.java) and share2
.java (share.java) and divide.java (extracted from addClient.java so readers).

� The module ShareObj module has been removed.

This module accepts the following four parameters from the user:

� Number of sub-tasks, e.g., 2 if the user divides the task into 2 sub-tasks.
� Interval of the series, e.g., 10 if the user wants to add the numbers from 1 to 10.
� File name which holds the IP address of the servers, e.g. ip.txt.
� Debug indicator—The value is 1 if the user wants to turn on this mode. The

program will print out more messages, which are useful for debugging. This
field is optional.

If a user forgets the parameter, he/she can type ‘java addClient2’ and the system
will print an instruction on the screen to remind the user the position of each
parameter as follows:

11.4.1 addClient2.java

This module provides the following functions:

� Accept input parameters from users.
� Invoke addClientThread2 according to the IP address file.
� Assign a sub-task to each thread.
� Update the grand total through the share2.java module.

The source codes of this module are presented in Fig. 11.5.

11.4.2 addClientThread2.java

This module differs from addClientThread.java (Chapter 9) in the following ways:

� It will check whether a sub-task is available in the beginning of both construc-
tor method and run() method. It will terminate itself if no more sub-tasks are
available.

� A sub-task will not be assigned to a thread until the connection is successful.
This design is more fault tolerant as servers on the websites might not be reliable.
Servers in the network will be racing for the sub-tasks.

� After the completion of calculation and before the termination of this thread, it
will check whether there are still any sub-tasks in the system. A new thread will
be generated before the termination if there are any unassigned sub-tasks.

The logic of this module is presented in Fig. 11.6, and the source codes of this
module are presented in Fig. 11.7.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

import java.net.*;
import java.io.*;
public class addClient2 {

public static void main(String[] args) throws IOException {
int Thread id=1;
int totalTasks =0;
timer t = new timer();
// ************ get parameter from command argument *******
if (args.length >= 1)

{
totalTasks = Integer.parseInt(args[0]);
System.out.println(′′number of sub-tasks :′′ + totalTasks);

}
else
{ System.out.println(′′ number of sub-tasks, number of interval′′);

System.out.println(′′ , name of IP file, debug indicator′′);
System.exit(-1);

}
long n= Integer.parseInt(args[1]); // no. of interval
boolean debug = false;
String ipFile= ′′ip.txt′′;
String hostIp=′′localhost′′;
if (args.length >=3) ipFile= args[2];
if (args.length >=4)

if (Integer.parseInt(args[3])==1) debug=true;
long startPosition =0;
long endPosition =n;
double x[]= new double[totalTasks*2];
divide subTaskArray = new divide(x,endPosition,totalTasks,debug);
subTaskArray.go();
Share2 answer = new Share2(totalTasks,debug); // control answer update
String ip[]=new String[50];
readIpFile reader= new readIpFile(ipFile,ip);
int numServer = reader.getNumServer();
if (debug) System.out.println(′′number of servers: ′′+ numServer);
timer total =new timer(); // timer for transmission + calculation
total.start();
// *************************** create Threads ***************
for (int i=1;i<=numServer;i++)

new addClientThread2(ip[i-1],x, i,totalTasks,answer,debug).start() ;
if (debug) System.out.println(′′wait for connection to complete ′′);
System.out.println(′′********* Answer: ′′+(long) answer.getAnswer()+ ′′

*********′′);
total.elasp(′′total time calculation + transmission :′′);
System.out.println(′′program terminated′′);

} // end of main method
}

Figure 11.5. addClient2.java

153

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

Connect to server

Any unassigned
sub-task

Terminate

Connection
successful

Able to get
 a sub-task

Transmit sub-task
to server

Get back the
answer

Any unassigned
sub-task

Terminate

Terminate

Terminate

Generate a new
thread

No

Yes

No

Yes

No

Yes

Yes

Figure 11.6. Logic of addClientThread2

154

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

import java.net.*;
import java.io.*;
import java.util.*;
public class addClientThread2 extends Thread
{

private Socket socket = null;
double x[];
int Thread id;
int totalTasks;
boolean debug;
Share2 answer;
boolean Done= false;
PrintStream out=null ;
Socket powerSocket;
BufferedReader in=null;
String site;
boolean connected=false;
long interval;
int subTask;
public addClientThread2(String site, double[] y,

int id, int totalTasks,Share2 answer,
boolean debug)

{
super(′′ClientThread′′);
if (debug) System.out.println(′′add Client Theard′′);
this.Thread id =id;
this.x =y;
this.totalTasks = totalTasks;
this.answer=answer;
this.debug=debug;
this.site=site;
this.interval=interval;
// *********************** try to connect now *************
subTask = answer.getTaskNumber();
if (debug) System.out.println(′′subTask number=′′+subTask);
if (subTask >0)
{

try
{
powerSocket = new Socket(site, 3333);
if (debug) System.out.println(′′connecting ′′+Thread id+′′ : ′′+ site);
out = new PrintStream(powerSocket.getOutputStream());
in = new BufferedReader(new InputStreamReader(

powerSocket.getInputStream()));
connected= true;
if (debug) System.out.println(′′connection ok′′);
}

Figure 11.7. addClientThread2.java

155

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

catch (UnknownHostException e)
{
System.err.println(′′unknown host: ′′+site);
}
catch (IOException e)
{
System.err.println(′′I/O connection problem to: ′′+site);
System.err.println(′′ close this thread:′′+Thread id);
}

}
}
public void run()
{
if (!connected) return; // do not continue if it is not connected
// *************** send data to server *********************
timer t = new timer();
subTask=answer.getNextTask();
if (debug) System.out.println(′′subTask=′′+subTask);
if (subTask>0)

{
if (debug) System.out.println(′′subTask=′′+subTask);
StringBuffer arrayBuffer = new StringBuffer(totalTasks*8);
try
{

String inputLine, outputLine;
int first = (subTask -1) * (x.length /totalTasks);
if (debug) System.out.print(′′*************** first=′′ +first);
int last = (subTask) * (x.length /totalTasks);
if (Thread id > totalTasks)
{

System.out.println(′′conection not created′′);
System.exit(1);

}
if (debug) t.elasp(′′ takes:′′);
if (debug) System.out.println(′′Start to transfer for ′′ + Thread id);
t.start();

if (debug) System.out.println(′′buffer created ′′);
for (int i=first; i < last;i++)
{

arrayBuffer.append(x[i]+′′ ′′);
}
if (debug) System.out.println(′′array: ′′ + arrayBuffer);
out.println(arrayBuffer); // transmit to power server
if (debug) System.out.println(′′Transmission of site ′′ + Thread id);
if (debug) t.elasp(′′ takes:′′);
timer t2= new timer();

Figure 11.7. (Continued)

156

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

Client Program of Model 3 157

t2.start();
double subAnswer=0.0;
if (debug) System.out.println(′′id=′′+Thread id+ ′′wait for answer ′′);

// get the answer from server ***********************
if ((inputLine = in.readLine()) != null)

subAnswer= Double.valueOf(inputLine).doubleValue();
t2.elasp(′′id=′′+Thread id +′′ time for cal+tran =′′);
// update total Answer ********
if (debug) System.out.println(′′id=′′+Thread id+ ′′ sub total:

′′+subAnswer);
answer.updateAnswer(subAnswer);
System.out.println(′′*** id=′′+Thread id+ ′′ sub-task answer= ′′

+ (long) subAnswer);
if (debug) System.out.println(′′subTask=′′+subTask);

}// end of try
catch (IOException e)
{

e.printStackTrace();
}

} // end of if
try
{
out.close();
in.close();
powerSocket.close();
} // end of try
catch (IOException e)
{
e.printStackTrace();
}
int nextSubTask = answer.getTaskNumber();
if (debug) System.out.println(′′ ************next subTask=′′+nextSubTask);
if (nextSubTask <= totalTasks)

new addClientThread2(site,x,Thread id,totalTasks,answer,debug).start() ;
}// end of run method

}

Figure 11.7. (Continued)

11.4.2.1 Constructor

In the constructor method, the program checks the availability of sub-tasks with
the following statements:

subtask = answer.getTaskNumber();

where answer is an object of the share2 class.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

158 11. Power Server: Model 3

Note that it is important to distinguish the differences between getNextNumber()
and getTaskNumber() methods. The getNextNumber() returns the number of next
available sub-task but the sub-task is not assigned to the thread yet. On the other
hand, the getNextTask() method returns the number next available sub-task and
assigns it to the thread. The sub-task is assigned only when the server is ready to
process it.

11.4.2.2 run() Method

In the run() method, the connection is checked by the following statement:

if (!connected) return;

The sub-task is assigned by the following statement:

subTask=answer.getNextTask();

The source codes of the addClientThread2 module are presented in Fig. 11.7.

11.5 divide.java Module

This module divides the task into sub-tasks and returns the task array to the calling
module. The source codes are presented in Fig. 11.8.

11.6 share2.java

This module differs from the share.java (in Chapter 9) in the following ways:

� Two new methods are added, i.e., getTaskNumber and getNextTask.
� The setGoAhead method is removed as this synchronization is not required.

The following are the functions of the new methods:

getTaskNumber—return the next available task number to the calling thread.
getNextTask—assign and return the next available sub-task number to the calling

thread.

The source codes of this module are presented in Fig. 11.9.

11.7 Testing

Programs can be tested in a similar way to Sections 6.5 and 6.6. Again I would
recommend that you start with one computer even if you have several computers
in front of you.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

Testing 159

import java.io.*;
import java.util.*;
public class divide
{

double x[];
long endPosition;
long totalTasks;
boolean debug;
public divide(double[] x, long endPosition, long totalTasks, boolean debug)
{

if (debug) System.out.println(′′divide module′′);
this.x = x;
this.endPosition=endPosition;
this.totalTasks = totalTasks;
this.debug = debug;

}
public void go()
{

long width = endPosition / totalTasks;
// ****** dividing job into sub-tasks *****************
for (int i = 0; i < x.length; i = i + 2) {

if (i == 0)
x[i] = 1;

else
x[i] = x[i - 1] + 1;

if ((i + 2) == x.length)
x[i + 1] = endPosition;

else
x[i + 1] = x[i] + width - 1;

}
if (debug)
{

System.out.print(′′ x[i]=′′);
for (int j = 0; j < x.length; j++)
{

System.out.print(′′ ′′ + x[j]);
}
System.out.println(′′ size of array = ′′ + x.length);

}
}

}

Figure 11.8. divide.java

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

class Share2
{

boolean debug = false;
int subTask =0;
int totalTask=0;
int doneTask=0;
double answer=0.0;
public Share2(int totalTask,boolean debug)
{

this.debug= debug;
this.totalTask = totalTask;

}
public synchronized int getTaskNumber()
{

int nextTaskNumber = subTask +1;
return nextTaskNumber; // return the number of the next available sub-task

}
public synchronized int getNextTask()
{

if (subTask == totalTask)
return 0;

else
{

subTask++; // assign the task
return subTask; // return the number of this sub-task

}
}

public synchronized void updateAnswer(double ans)
{

answer =answer+ans;
doneTask++;
notifyAll();

}
public synchronized double getAnswer()

{
if (debug) System.out.println(′′waiting for answer by Server′′);
while (doneTask != totalTask)

{
try
{

wait();
}
catch (InterruptedException e)
{

System.err.println(′′Exception: ′′ + e.toString());
}

}
return answer;
}

}

Figure 11.9. share2.java

160

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

Testing 161

11.7.1 First Test

1. Start the server program by typing the following command in DOS:

java addServer2

Remember to type ‘2’ at the end of this command.
More information can be displayed if you turn on the debug indicator. This
indicator can be turned on by appending ‘1’ in the command.

e.g., java addServer2 1

2. Start the client program by typing the following command in DOS:

e.g., java addClient2 4 100 local.txt

where 4 is the total number of sub-tasks, 100 is the range from 1 to 100 and
local.txt is the IP file (refer to Section 6.5 for the content of this file).

You can obtain more information by turning on the debug indicator. You can
turn it by adding appendix ‘1’ in the above command. Refer to Section 11.3 for
the description of the parameters.

11.7.2 Server and Client Screens

Figure 11.10 shows the server screen. Four sub-totals are displayed. Figure 11.11
shows the client screen. In addition to showing the grand totals, the four sub-totals
are also displayed.

11.7.3 Troubleshooting

Make sure that you are using the right version of programs (i.e., addClient2 and
addServer2). It is very easy to forget typing ‘2’ in either one of them, particularly
if you have done a lot of tests using the models in Chapters 9 and 10.

11.7.4 Second Test

If the first test is successful, you are ready to start the second test with two or more
computers.

1. Copy all programs to all computers.
2. Type ‘java addServer’ in DOS of both server computers.
3. Obtain the IP addresses of both computers.
4. You can use a third computer or use one of the two computers as client.

� Edit the ip.txt and replace the IP addresses with your server computers.
� Type ‘java addClient2 4 1000 ip.txt’, where 4 is total number of sub-tasks

and 1000 is the range 1 to 1000.

The screen of the client is displayed in Fig. 11.12.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

162 11. Power Server: Model 3

Figure 11.10. Server screen

Figure 11.11. Screen of client

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

Comparison with Model 1 163

Figure 11.12. Screen from client of test2 (with two servers)

11.7.5 Further Tests

If the second test is fine, you can try further tests, adding more computers, and
using different combinations until you understand the operations.

11.8 Comparison with Model 1

The overall structure of model 3 is presented in Fig. 11.13. The model in
this chapter has the following advantages and disadvantages compared with
model 1:

Advantages
� It is more robust and fault tolerant.
� It can maintain ‘load balance’ in both homogeneous and heterogeneous sys-

tems. Thus completion time can be reduced in different systems.
Disadvantage

� The programming logic is more complex. It will take longer time to develop
and debug the programs.

� The overall communication cost is much higher, especially if the servers are
deployed in different countries.

� Users need to specify the number of sub-tasks for the system. However, it is
not easy to find out the number that can ensure the shortest time of completion.
A lot of factors can affect this number. Such factors include:
◦ CPU speed of each server.
◦ Communication speed (establishment of socket) and transmission of sub-

task and sub-total.
◦ Overhead in generating threads within the server.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

164 11. Power Server: Model 3

addClient2

addServerThread2

Answer

Server computer Client computer Server computer

Sub-task

Answer

addClientThread2
(1)

addServerThread2
addClientThread2

(2)

addServer2

Create
threads

Sub-task

timer share

addadd

addServer2

readIpFile IP FileDivide

Figure 11.13. Overall structure of model 3

Note that you can test the system with different numbers of sub-tasks with the
same configuration and problem size. Such experiments will help you to understand
the aforementioned factors.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

12
Power Server: Model 4

12.1 Introduction

In model 3, you need to type a command to invoke the server side program. It is
good for systems with the following characteristics:

� There is a small number of servers in the network.
� There are only one or two applications in the network, and these applications

are frequently used. Thus, users can simply invoke the program and await
the request from the client. Users do not need to interface anymore after the
unitization.

If these characteristics are not true, model 3 can be modified to run under a web
server using a similar method in Chapter 11.

12.2 Power Server with Web Server—Model 4

Model 3 can easily be modified to work with any web server. A program ‘invoke-
Server2’ for the client is written to send HTTP messages to invoke servlets in
server computers. A schematic diagram is presented in Fig. 12.1. This program
reads the IP addresses in a local file. It then creates a thread to invoke servlets from
remote servers by sending them HTTP messages.

12.2.1 invokeServer2 Module

The source codes of this module are presented in Fig. 12.2. The operations of
this module are similar to invokeServer.java. This module differs from invoke-
Server.java in the following way:

� A module startServlet2 is invoked instead of startServlet.

165

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

166 12. Power Server: Model 4

invokeServer2

readIpFile

addServlet2

HTTP to
invoke

addServlet

Response

Server computer Client computer Server computer

HTTP to
invoke

addServlet

Response

startServlet2
(1)

addServlet2
startServlet2

(2)

Createthreads

Figure 12.1. Invoking the servlet of remote computer.

12.2.2 startServlet2 Module

This module calls the URL connect module to send the HTTP message to the
server. It will get a true value if the connection is normal, otherwise it will get a
false value from the URL connect module. The complete coding list is given in
Fig. 12.3.

The name and IP address of the client computer are obtained by the following
line:

InetAddress address = InetAddress.getLocalHost();

The information of the client computer is sent to the server for debugging
purposes. It is embedded in the following line:

String urlString =′′http://′′ +ip+′′:8080/servlet/addServlet2?site=′′+address;

12.3 Server Side Program

This servlet enables the user to invoke the addServerThread2 program (Chapter 11)
with an HTTP message. The structure of this servlet is presented in Fig. 12.4.

12.3.1 listen2 Module

The listen Module establishes a socket (in port 3333). Whenever it receives a
request from the client, an addServer2 thread will be invoked by the following
statements:

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

Server Side Program 167

import java.net.*;
import java.io.*;

public class invokeServer2 {
public static void main(String[] args) throws IOException {

int Thread id=1;
int totalProc =0;
timer t = new timer();
// ************ get parameter from command argument *******
if (args.length >= 1)

{
totalProc = Integer.parseInt(args[0]);
System.out.println(′′number of servers :′′ + totalProc);

}
else
{ System.out.println(′′ number of servers′′);

System.out.println(′′ , name of IP file ′′);
System.exit(-1);

}
String ipFile= ′′ip.txt′′;
// default file name
if (args.length >=2) ipFile= args[1];
String ip[]=new String[totalProc+1];
readIpFile reader= new readIpFile(ipFile,ip);
System.out.println(′′invoked ′′ + Thread id);
// *************************** ending operation ***************
timer t1= new timer();
t1.start();
for (int i=0;i<totalProc;i++)

{
new startServlet2(ip[i]).run();
}

t1.elasp(′′********************************* It takes : ′′);
System.out.println(′′program terminated′′);

}// end of main method
}

Figure 12.2. invokeServer2.java

while (listening)
{

try
{
System.out.println(′′tring to connect Thread : ′′ + Thread id);
new addServerThread2(serverSocket.accept()).start();

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

import java.net.*;
public class startServlet2 extends Thread
{

String ip;
InetAddress hostIp;
public startServlet2(String ip)
{

super (′′invokeServer′′);
this.ip=ip;
this.hostIp=hostIp;

}
public void run()
{
boolean connected = false;

try
{

InetAddress address = InetAddress.getLocalHost();
System.out.println(′′try to connect ′′+ip);
String urlString =′′http://′′

+ip+′′:8080/servlet/addServlet2?site=′′+address;
connected =new URL connect(urlString).go();
if (connected)
System.out.println(′′connected :′′+ ip);
else

System.out.println(′′failed to connect ′′+ip);
}
catch (Exception e)
{

System.err.println(′′get error: ′′ + e);
}

} // end of run method
}

Figure 12.3. startServlet2.java

listen2

addServerThread2

add timer

addServlet2

Figure 12.4. Structure of

addServlet2

168

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

Testing the invokeServer2 Program 169

System.out.println(′′connected Thread : ′′ + Thread id);
Thread id =Thread id + 1;
}
catch (IOException e)
{
System.err.println(′′accept failed′′);
}

}// end of while

The server side programs in Chapter 11 are modified. The addServerThread,
add and timer modules do not need any further modification. The coding list is
presented in Fig. 12.5.

12.4 Testing the invokeServer2 Program

You need a web server to test this module. Again it is simpler to use one computer
in the first test even if you have several computers.

12.4.1 Test 1

You can test the program by following these steps:

1. Copy the server side programs to the default servlet path of your web server.
2. Start your web server.
3. Type ‘java invokeServer2 1 local.txt’ in DOS. The first parameter ‘1’ is the

number of servers in the system. One computer is used as both client and server
in this test. The results are displayed in Figs. 12.6 and 12.7. Fig. 12.6 shows the
screen of the server window, while Fig. 12.7 shows the client window.

12.4.2 Troubleshooting

Check the following if you have any problems:

� Make sure that the web server is running.
� Make sure that you are using correct versions of programs as there are several

models.
� Check the port number of your web server. The default port is 8080 for

Tomcat. This number could be different if you are using other servers. Type
http://localhost:8080 to test this port.

� If you are not sure whether it is a server side or client side problem, you can also
test the servlet by typing the URL http://localhost:8080/servlet/addServlet2 on
your browser

You will get the screen as shown in Fig. 12.8 on your browser if the server side
is working properly.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

170 12. Power Server: Model 4

import java.io.*;
import java.net.*;
import java.util.*;
public class listen2 extends Thread
{

Socket addSocket= null;
ServerSocket serverSocket = null;
boolean listening = true;
int count =1;
int Thread id;
int portNumber= 3333;
public listen2()
{

System.out.println(′′listening started′′);
}
public void run()
{

Date start date=new Date();
System.out.print(start date);

try{
serverSocket = new ServerSocket(portNumber);
System.out.println(′′Add servlet2 init, started′′);

}
catch (IOException e)

{
System.err.println(′′Could not listen on port: ′′+ portNumber);
System.exit(-1);

}
while (listening)
{

try
{
System.out.println(′′trying to connect Thread : ′′ + Thread id);
new addServerThread2(serverSocket.accept(),true).start();
System.out.println(′′connected Thread : ′′ + Thread id);
Thread id =Thread id + 1;
}
catch (IOException e)
{
System.err.println(′′accept failed′′);
}

}// end of while
}// end of method

}

Figure 12.5. listen2.java

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

Testing the invokeServer2 Program 171

Figure 12.6. Server window

Figure 12.7. Client window

Figure 12.8. Screen of the browser

12.4.3 Test 2

In this test, you use several computers to test the programs in this chapter with the
following steps:

1. Install the addServlet2 programs in three computers.Nnote that alternatively
you can share the folder with other computers, it will save a lot of time.

2. Start the Tomcat.
3. Check the IP addresses of your three servers.
4. Create an office.txt file with the IP addresses of your computers.
5. Type ‘java invokeServer2 2 office.txt’ in DOS on a third computer. The second

parameter (‘2’) means two servers.

The contents of the office.txt file in this example are:

3
202.40.197.26
202.40.197.173
202.40.197.69

The following figures show the screens of client side program (Fig. 12.9) and
server side programs (Fig. 12.10).

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

172 12. Power Server: Model 4

Figure 12.9. Client screen (with three servers in the network)

Figure 12.10. Server screen (with three servers in the network)

12.5 Testing the System

You can test the system by following the same instructions in Section 11.7.4. The
operations on the client are almost identical to those on Chapter 11.

12.5.1 Experiment with Three Servers

If the testing in Section 12.4.2 is successful, you can start the following experiment
with three servers. Type the following command in your client computer:

java addClient2 5 100 office.txt

Figure 12.11. Client screen (with three servers)

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

Testing the System 173

Figure 12.12. Screen of first server (with three servers)

The job is divided into five sub-tasks. They are distributed to three servers. As
you can see from the following figures, server 1 is much faster than the other two
computers. It gets three sub-tasks, while the other two computers get only one.
Figure 12.11 shows the screen of the client computer, while Figs. 12.12 to 12.14
show the screens of three different servers.

Figure 12.13. Screen of second server (with three servers)

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

174 12. Power Server: Model 4

Figure 12.14. Screen of third server (with three servers)

12.5.2 Further Testing

As the server side program is running on the servers, you do not need to type any-
thing on the server. Try different configurations until you understand the operations
of this model.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:14

13
Power Server: Model 5

13.1 Introduction

In models 2 and 4, the servlet programs and client programs communicate with
each other using a special port (i.e., 3333 in our example). These designs have the
following advantages and disadvantages:

Advantages
� The communication process is faster as there is a dedicated port for the socket.
� The default port 8080 (or 80) is used only in the initiation process, thus it

will not overload this port, particularly if there are other applications in the
system.

Disadvantages
� Many computers are behind a firewall. We need to reconfigure the firewall

so it can release the port 3333 (or any other port which the user wants to
employ). If we have a large number of servers with similar problems, it will
be a time-consuming process.

� Many organizations might not be comfortable releasing ports for these pur-
poses.

Model 4 can be modified to overcome the firewall problem. Client computers
will only send messages to the server using HTTP. This new model, model 5, will
be discussed in the subsequent sections in this chapter.

13.2 Power Server—Model 5

As discussed in Chapter 6, servlets can get input data from client computers with
the doGet method. This model differs from model 4 in the following ways:

� All sub-tasks will be sent to the power server with HTTP message.
� Servers will not listen in port 3333.
� Client computers will not use sockets for communication.

175

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:14

176 13. Power Server: Model 5

addServer5

add timer

Figure 13.1. Structure of server program.

13.3 Server Side Program

The logic of this program is simpler as the actual communications will be handled
by the web server. The overall structure of this program is presented in Fig. 13.1.

This module provides the following functions:

� Accept input data from the client (through the HTTP message) with the following
statements:

fromRemote = in.readLine();
if (debug) System.out.println(′′remote input:′′+ fromRemote+′′********′′);
StringTokenizer tokens = new StringTokenizer(fromRemote);
startPosition = Double.valueOf(tokens.nextToken()).doubleValue();
endPosition = Double.valueOf(tokens.nextToken()).doubleValue();

� Pass the input data to the add.java class for calculation with the following state-
ment:

add getSum = new add((long) startPosition, (long) endPosition);
long sum = getSum.adding();

� Send the sub-total back to the client with the following statement:

out.println(line);

All major functions are performed by the doGet() method. The init() method
provides information for debugging only. The complete source codes of this module
are presented in Fig. 13.2.

13.4 Client Side Program

The program differs from that of model 4 in the following ways:

� The data are embedded in an HTTP message.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:14

Client Side Program 177

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class addServlet5 extends HttpServlet
{

int count = 1;
boolean debug = true;
public void init(ServletConfig config) throws ServletException
{

System.out.println(′′***′′);
Date start date = new Date();
System.out.println(start date);

}
public void doGet(HttpServletRequest request, HttpServletResponse response)

throws ServletException, IOException
{

PrintWriter output = response.getWriter();
String fromRemote = request.getParameter(′′input ′′);
if (debug) System.out.println(′′remote input:′′+ fromRemote+′′********′′);
StringTokenizer tokens = new StringTokenizer(fromRemote);
double startPosition = Double.valueOf(tokens.nextToken()).doubleValue();
double endPosition = Double.valueOf(tokens.nextToken()).doubleValue();
if (debug)

{
System.out.println(′′start position :′′ + startPosition);
System.out.println(′′end position :′′ + endPosition);

}
//**************************add operations ***********
timer t = new timer();
t.start();
add getSum = new add((long) startPosition, (long) endPosition);
long sum = getSum.adding();
t.elasp(′′It take :′′);
String subTotal = Long.toString(sum);
output.println(subTotal);
System.out.println(′′addServlet count = ′′+count);
System.out.println(′′addServlet count = ′′+count);
count++;
output.close();

}// end of method
public void destroy()
{

System.out.println(′′destroy method called ′′);
}

}

Figure 13.2. addServlet5.java

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:14

178 13. Power Server: Model 5

Share2

addClient5

addClientThread5 dividedivide readIpFile

timer HandleHttp

Figure 13.3. Structure of the client program.

� An HTTP message is sent to the servlet on the server.
� This program does not use sockets for communication.

The overall structure is presented in Fig. 13.3.

13.4.1 addClient5 Module

This module differs from addClient2 in only one statement:

new addClientThread5(ip[i-1],x, i,totalTasks,answer,debug).start() ;

The source codes of this module are presented in Fig. 13.4 for readers’ easy
reference.

13.4.2 addClientThread5 Module

This module differs from addClientThread2 in the following ways:

� All lines for socket communications are removed.
� It calls a new module html.java to handle the communications with the server.

The source codes are presented in Figs. 13.5 and 13.6.

13.4.3 handleHttp Module

This is a new module, and it provides the following functions:

� Accept input data from the calling module (i.e., addClientThread5)

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:14

Client Side Program 179

import java.net.*;
import java.io.*;
public class addClient5
{

public static void main(String[] args) throws IOException
{

int totalTasks = 0;
//************ get parameter from command argument *******
if (args.length > = 1)

{
totalTasks = Integer.parseInt(args[0]);
System.out.println(′′number of sub-tasks :′′ + totalTasks);

}
else
{ System.out.println(′′number of sub-tasks, number of interval ′′);

System.out.println(′′, name of IP file, debug indicator ′′);
System.exit(-1);

}
long n = Integer.parseInt(args[1]); // no. of interval
boolean debug = false;
String ipFile = ′′ip.txt ′′;
if (args.length > = 3) ipFile = args[2];
if (args.length > = 4)

if (Integer.parseInt(args[3]) = 1) debug = true;
long endPosition = n;
double x[] = new double[totalTasks*2];
divide subTaskArray = new divide(x,endPosition,totalTasks,debug);
subTaskArray.go();
Share2 answer = new Share2(totalTasks,debug); // control answer update
String ip[] = new String[50];
readIpFile reader = new readIpFile(ipFile,ip);
int numServer = reader.getNumServer();
if (debug) System.out.println(′′number of servers:′′+ numServer);
timer total = new timer(); // timer for transmission + calculation
total.start();
//*************************** create Threads ***************
for (int i = 1;i< = numServer;i++)

new addClientThread5(ip[i-1],x, i,totalTasks,answer,debug).start() ;
if (debug) System.out.println(′′wait for connection to complete ′′);
System.out.println(′′********* Answer:′′+(long) answer.getAnswer()+ ′′

*********′′);
total.elasp(′′total time calculation + transmission :′′);
System.out.println(′′program terminated ′′);

}// end of main method
}

Figure 13.4. addClient5.java

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:14

180 13. Power Server: Model 5

import java.io.*;
public class addClientThread5 extends Thread
{

double x[];
int Thread id;
int totalTasks;
boolean debug;
Share2 answer;
PrintStream out = null;
BufferedReader in = null;
String site;
int subTask;

public addClientThread5(String site, double[] y,int id,
int totalTasks,Share2 answer,boolean debug)

{
super(′′ClientThread ′′);
if (debug) System.out.println(′′add Client Theard ′′);
this.Thread id = id;
this.x = y;
this.totalTasks = totalTasks;
this.answer = answer;
this.debug = debug;
this.site = site;
subTask = answer.getTaskNumber();
if (debug) System.out.println(′′subTask number = ′′+subTask);

}

public void run()
{
//*************** send data to server *********************
timer t = new timer();
subTask = answer.getNextTask();
if (debug) System.out.println(′′subTask = ′′+subTask);
if (subTask>0)

{
if (debug) System.out.println(′′subTask = ′′+subTask);
StringBuffer data = new StringBuffer(totalTasks*8);
String inputLine;
int first = (subTask -1) * (x.length /totalTasks);
if (debug) System.out.print(′′*************** first = ′′ +first);
int last = (subTask) * (x.length /totalTasks);
if (Thread id > totalTasks)
{

System.out.println(′′conection not created ′′);
System.exit(1);

}

Figure 13.5. addClientThread5.java

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:14

Client Side Program 181

if (debug) t.elasp(′′takes:′′);
if (debug) System.out.println(′′Start to transfer for ′′ + Thread id);
t.start();
if (debug) System.out.println(′′buffer created ′′);
for (int i = first; i < last;i++)
{

data.append(x[i]+′′+′′);
}
if (debug) System.out.println(′′array:′′ + data);
timer t2 = new timer();
t2.start();
//********* send http message ******************************
String input=′′http://′′ +site+′′:8080/servlet/addServlet5?input=′′+data;
handleHttp handle = null;
try
{

handle = new handleHttp(input, debug);
}
catch(Exception e)
{

System.out.println(e);
System.out.print(′′Make sure that web server in ′′ + site);
System.out.println(′′is running and the servlet is in the right path ′′);
System.out.println(′′Start the job again when you are ready. ′′);
System.exit(1);

}
inputLine = handle.getAnswer();
if (debug) System.out.println(′′Transmission of site ′′ + Thread id);
if (debug) t.elasp(′′takes:′′);
double subAnswer = 0.0;
if (debug) System.out.println(′′id = ′′+Thread id+ ′′wait for answer ′′);
//********* get the answer from server ***********************
subAnswer = Double.valueOf(inputLine).doubleValue();
t2.elasp(′′id = ′′+Thread id +′′time for cal+tran = ′′);
//************* update total Answer ********
if (debug) System.out.println(′′id=′′+Thread id+′′sub total:′′+subAnswer);
answer.updateAnswer(subAnswer);
System.out.println(′′*** id = ′′+Thread id+ ′′sub-task answer = ′′

+ (long) subAnswer);
if (debug) System.out.println(′′subTask = ′′+subTask);

}//end of if
int nextSubTask = answer.getTaskNumber();
if (debug) System.out.println(′′************next subTask = ′′+nextSubTask);
if (nextSubTask < = totalTasks)

new addClientThread5(site,x,Thread id,totalTasks,answer,debug).start();
}//end of run method

}

Figure 13.5. Continued

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:14

182 13. Power Server: Model 5

import java.net.*;
import java.io.*;
public class handleHttp
{

URL httpMessage;
String answer;
BufferedReader in = null;

public handleHttp(String message, boolean debug) throws Exception
{

{
if (debug)System.out.println(′′http called *********************′′);
httpMessage = new URL(message);
URLConnection connect = httpMessage.openConnection();
in = new BufferedReader(new InputStreamReader(

connect.getInputStream()));
}

}
public String getAnswer()
{

try
{

answer = in.readLine();
in.close();

}
catch (IOException e)
{

System.out.println(′′io exception error in handleHttp ′′);
System.out.println(e);

}
return answer;

}
}

Figure 13.6. handleHttp.java

� Send the following HTTP message to the server.

String urlString = ′′http://′′ +ip+′′:8080/servlet/addServlet5?site = ′′+data;

� Receive the answer (i.e., sub-total) and return it to the calling module.

The source codes of this module are presented in Fig. 13.7.

13.5 Testing

Testing is simpler than previous models. As everything on the server computer is
controlled by the web server, all we need is to type the command from the client.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:14

Testing 183

1. Copy all programs to the default path of your servers.
2. Make sure that all web servers are running.
3. Edit the ip.txt files with the server’s IP addresses.
4. Type the command to invoke the client side program. The parameters are iden-

tical to model 4. We present the four parameters here again for the readers’ easy
reference:
� Number of sub-tasks, e.g., 10 if the user divides the task into 10 sub-tasks.
� Intervals of the series—50 if the user wants to add the numbers from 1 to 50.
� File name which holds the IP address of the servers,—e.g., ip.txt.
� Debug indicator—the value is 1 if the user wants to turn on this mode. The

program will print out more messages, which are useful for debugging. This
field is optional.

The following line is an example of a command:

java addClient5 10 50 ip.txt

If a user forgets the parameters, he/she can type ‘java addClient5’ and the system
will print an instruction on the screen to remind user the position of each parameter.

13.5.1 Experiment with One Server

Start the client program by typing the following command in a DOS session.

java addClient5 3 300 local.txt

Figure 13.8 shows the screen of the client, while Fig. 13.9 shows the screen of
server.

13.5.2 Experiment with Two Servers

Start the client program by typing the following command in a DOS session.

java addClient5 5 500 local.txt

Figure 13.7. Screen of client (with one server)

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:14

184 13. Power Server: Model 5

Figure 13.8. Screen of client (with one server)

Figure 13.10 shows the screen of the client, while Figs. 13.11 and 13.12 show
the screens of server 1 and server 2.

Figure 13.9. Screen of client (with two servers)

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:14

Testing 185

Figure 13.10. Screen of server 1 (with two servers)

Figure 13.11. Screen of server 2 (with two servers)

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:14

186 13. Power Server: Model 5

Assigned
sub-task
queue

Unassigned
sub-tasks

queue

Completed
sub-tasks

Java application program

H
T

T
P

 m
e

ss
a

g
e

S
u

b
-t

a
sk

R
e
su

lt

Client computer

Server program

Servlet

Sub-
task

Load
servlet

H
T

T
P

 m
e
ss

a
g
e

a
n
d
 s

u
b
-t

a
sk

Server computer 1 Server computer i Server computer N

Servlet

Internet / Intranet

R
e
su

lt

Server program

Servlet

Sub-
task

Load
servlet

H
T

T
P

 m
e

ss
a

g
e

a

n
d

 s
u

b
-t

a
sk

Servlet

R
e
su

lt

Server program

Servlet

Sub-
task

Load
servlet

H
T

T
P

 m
e
ss

a
g
e

a
n
d
 s

u
b
-t

a
sk

Servlet

R
e
su

lt
Figure 13.12. Robust power server model.

13.6 Comparison with Model 4

The model in this chapter provides the following advantages:

� The logic of the server program is simpler as the communications are handled
by the web server. Thus it is easier to develop and debug. It will take a shorter
time to develop the whole system.

� We do not need to worry about the communication port. It will be a time-
consuming exercise to check and change (if necessary) the port number if we
have a large number of servers. We will have problems under the following
conditions:
◦ Some other software packages are using the port.
◦ The port is blocked by a firewall.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:14

Other Improvements 187

13.7 Further Tests

Five models have been introduced (from Chapters 9 to 12). Each model has its own
advantages and disadvantages. I recommend you to carry out tests with different
models using the same size of problem (e.g., add 1 to 1,000,000 with different
models and configurations) so you can compare the efficiencies of them.

13.8 Other Improvements

I have tried to keep the size of all programs as small as possible (in terms of
number of coding lines) so they are easy to understand. If you develop mission
critical applications in the future, you should consider incorporating some of the
following improvements:

� More error-checking routines should be included.
� The sub-task queues and answers should be written to disk for applications which

take a long time to complete (e.g., months or even years). If the client computer
crashes for any reason, it can recover from the disk and resume the process.

� It is possible that a server computer will crash after it accepts a sub-task from a
client. The client computer will wait forever and the job will never be completed.
For a time-consuming task, the client should be able to detect this problem. If
the client does not receive the answer of a sub-task after a reasonable period,
the sub-task should be assigned to a different server. Instead of maintaining one
sub-task, three sub-task files should be maintained as in Fig. 13.13.
◦ Unassigned sub-tasks queue.
◦ Assigned sub-tasks queue.
◦ Completed sub-tasks.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

14
Wireless P2P System

14.1 Introduction

Traditional networks require cables to transmit messages. Wireless technologies
enable devices to communicate without physical connections. Many people are
already familiar with different kinds of wireless devices. Such devices include
remote controls, cordless computer keyboards, mouse and stereo headsets using
Infrared (IR) or radio transmission. The signals transmitted by these devices are
very simple, and the distance between devices is quite short.

On the other hand, mobile phones allow people to transmit more complex sig-
nals over far greater distances. In addition to voice communication, nowadays
many mobile phones are able to access the Internet using the Wireless Application
Protocol (WAP) (Beaulieu, 2002; Cook, 2001) technology through the services of
telephone companies.

Personal Digital Assistants (PDAs) are small computers, which can fit into a
pocket or a purse. Such devices provide features such as address books, sched-
ules, to-do lists, e-mail, etc. Early model PDAs could communicate with regular
size computers via a special cable connection. Some of them employed IR ports
for wireless communication. Although IR is more convenient than cable, there
are some drawbacks to this type of communication. The communication distance
between devices is very short (i.e., usually within a few inches) and the users
need to align the devices carefully. Later version of PDAs could communicate
with networked PCs via a dial-up connection. PDAs with built-in modems are still
relatively new. In order to meet the increasing demand for easier communication
between mobile devices and wired PCs, there are many new wireless communi-
cations standards.

All these standards are different, and they all have security weaknesses. How-
ever, two of them are beginning to gain wide acceptance among mobile de-
vice vendors. They are the IEEE802.11b and Bluetooth technologies. Many new
PDAs and mobile phones come with built-in IEEE802.11b and/or Bluetooth
capabilities.

188

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

Bluetooth 189

14.2 IEEE802 Standards

The IEEE802.11 standards were developed by the Institute of Electronic and Elec-
trical Engineers (IEEE) Computer Society. The design began in 1990, and it took
7 years to complete the first standard. It uses the 2.4 GHz radio band for commu-
nication. Users do not need a license to use this band in most countries. This is
one of the reasons that this standard has become so popular.

The standard specifies the communication between wireless client and the ac-
cess points. It also defines the optional use of encryption. However, there are some
well-known security weaknesses in this standard (Park et al., 1998), and the max-
imum speed is only 2 Mbps. IEEE workgroups have been developing many new
IEEE802.11 standards to overcome these problems, and they differentiate these
newer standards by appending a letter behind the 802.11. Although there are a
large number of new standards, only three standards have products in the market
now. They are IEEE802.11a, IEEE802.11b and IEEE802.11g.

The most popular standard is the IEEE802.11b. The data transfer rate is improved
to 11 Mbps and the range to 100 meters while still using the 2.4 GHz radio band.
Access points and network cards with this standard are inexpensive. Devices from
different vendors are extremely compatible with each other. Installation is easy
and there is wide-spread use in small offices and homes.

On the other hand, IEEE802.11a offers much higher speed (up to 54 Mbps). It
uses the 5 GHz radio band so it avoids interference from electronic devices (such as
microwave ovens, cordless phones, etc.). However, this radio band is not available
for unlicensed use in many countries. Another problem is that IEEE802.11a de-
vices are not backward compatible to the slower IEEE802.11b. This problem may
be barrier for organizations, which already have IEEE802.11b devices to deploy
802.11a.

IEEE802.11g provides a higher speed (up to 54 Mbps), and it is backward
compatible to 802.11b. Organizations do not need to replace existing 802.11b
devices when they add new 802.11g technologies. The first product is available in
January 2003, and it still uses the 2.4 GHz radio band.

14.3 Bluetooth

Bluetooth is named after the King Harald Bluetooth who united Denmark and
Norway. The Bluetooth specification is a low-cost, low-power, wireless solution,
which covers 10 m. The maximum speed is 700 Kbps. Bluetooth uses the 2.4 GHz
radio frequency range, and it avoids interference from other electronic devices
using frequency-hopping technologies.

This technology can be used to replace the inconvenient IR. It is easy to synchro-
nize devices and transfer files. The inexpensive Bluetooth module can be built into
printers, fax machines and other peripherals. It is not a competitor of IEEE802.11

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

190 14. Wireless P2P System

standards as the low-power Bluetooth can operate only within a relatively short
distance. It simply enables users to eliminate or minimize the number of cables
between computers and peripherals. Devices with Bluetooth technologies can dis-
cover and talk to each other easily (Lamm et al., 2001).

14.4 Wireless LAN

Wireless LAN technologies provide the following advantages:

� You can move the computer to any place within the wireless signal coverage.
Thus, a wireless network is more flexible in the long run.

� You can avoid the cost of installing network cables through walls or under floors.
� In many cases, a wireless network is easier and cheaper to extend than a wired

network.

14.5 Wireless Routers

In addition to wireless applications, many people have installed wireless routers at
home. Wireless routers became available several years ago, are very easy to install
and mostly cost less than $100. They are convenient in the following ways:

� It is quite common that families have several computers, usually in different
rooms. The installation of broadband cables to network those computers would
be a time-consuming and expensive task. Wireless routers solve this problem
easily.

� Users can move their computers easily around the home, as long as they remain
within the coverage of the wireless signal. They do not need to rearrange network
cables. For example, a notebook computer can be moved from the bedroom to
the living room with ease at any time, always retaining its Internet connection.

14.6 Internet-Enabled Devices

The number of mobile phones has grown significantly in the past few years. There
are 1.2 billion mobile phones, and these ubiquitous devices are changing the
ways in which we conduct our daily lives. Mobile phones are becoming more
powerful, and manufacturers are incorporating more functions into them. For ex-
ample, many mobile phones have MP3 functions. Many can also take photos,
play video, send e-mail messages and display and allow the editing of simple
documents.

In addition to voice communication, many mobile phones are able to access
the Internet using WAP technology. The owners of such phones can communicate
with other users who are connected to the Internet via either wireless devices or
wired connections, as shown in Fig. 14.1.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

Problems of Mobile Phones 191

User,s
notebook computer

Access point

Internet

User,s PDA

User,s
smart phone

Other users
with

wired environment

Other user,s
notebook computer

Access point

Other user,s PDA

Other user,s
smart phone

Figure 14.1. Internet with mobile devices.

14.7 Problems of Mobile Phones

We can consider high-end mobile phones as mobile computers because they have

� a processor,
� memory in the phone,
� a keyboard and
� the ability to connect to the Internet with one of the following services:

◦ IEEE802.11 standards or Bluetooth or
◦ services of telephone companies (e.g., GPRS).

However, there are several problems in designing and developing software for
mobile devices. These problems prevent mobile phones from participating with
either clients or servers in our P2P models. Now let us discuss these:

� Speed of the CPU. The CPU speed on smart phones is much lower than that
in regular PCs. However, the owners of these mobile devices operate in real
time, and they expect quick responses. It is not possible to run a computationally
intensive application on a mobile phone.

� Limited memory. Mobile phones have small amounts of memory, but many
computer packages consume large amounts of memory. Hence, software for
these devices must be carefully designed to reduce memory requirements.

� Screen size. The screen size on mobile phones is much smaller than regular
monitors. Developers need to design the screen output carefully. Only essential
information should be displayed.

� Time-consuming input method. Average phones have only 15 to 25 keys while
regular computer keyboards have more than 102 keys. The keys on phones are

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

192 14. Wireless P2P System

much smaller than those on the computers. One solution is to use a ‘touch screen’
as on the Sony Ericsson P910. However, this technology is still expensive, so
only top model smart phones use it. Typing data into a phone is always unpleasant
and time consuming. To make an application popular, designers need to reduce
the amount of input needed.

� Lack of standards. We do not have common standards for mobile phones. They
have different numbers of keys and functions and different capacities such as
screen size. They also have different kinds of operating systems, such as Sym-
bian, Windows CE, Palm, etc. Different manufacturers support different kinds
of development tools. It is difficult to develop software that can be implemented
on all platforms.

� Lack of standard Java support. Although many high-end mobile phones support
Java, some do not. As mobile phones have only a small amount of memory, Java
programs for normal computers are usually too large and must be modified. A
special development kit, J2ME, must be used to compile the programs.

14.8 Extending the Power of Mobile Phones

Fortunately, there is a standard for connecting mobile phones to the Internet: WAP.
WAP1.0 uses the wireless markup language (WML), but WAP2.0 can support both
extensible markup language (XML) and html pages. A mobile phone accesses a
WAP file by the following process (Fig. 14.2):

1. The mobile phone sends a GPRS signal.
2. The computer of the telephone company transforms the GPRS signal to a HTTP

message and sends it to a remote server.

Mobile
phone

WAP file

GPRS signal HTTP request

HTTP request

WAP file

Telephone company,s
computers WAP file

Web
server

WAP files

Server
computer

Internet

Figure 14.2. Accessing the Internet with WAP.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

Wireless P2P Systems with Mobile Phones 193

 eliboM
phone

Telephone company,s
computers

 telvreS
margorp

Web server

tseuqer PTTHesnopseR

GPRS signal

esnopseR

tseuqer PTTH

esnopseR

Internet

sksaT

Figure 14.3. Invoking servlet with mobile phone.

3. The server retrieves the corresponding WAP file and sends it back to the tele-
phone company’s computer.

4. The telephone company’s computer transforms the WAP file into a telephone
signal and sends it to the phone.

It is possible to invoke a servlet with a GPRS signal. This ability enables the
phone to handle some computationally intensive jobs. Instead of performing cal-
culations with the phone’s processor, the phone sends HTTP messages to invoke
servlets in a remote computer. The servlets perform the calculations, assemble
WAP files and send the answers back to the phone. The procedures are described
in Fig. 14.3.

Some computationally intensive jobs can take several hours to complete, but we
cannot expect a user to hold a phone for several hours. As an alternative, we can
send the answer to the phone with SMS message, as in Fig. 14.4. If the answer
is too long to fit on a single SMS message, then a server can store the answer. A
URL address can then be embedded in the SMS message, and the user can click
on it to access the answer on the server.

14.9 Wireless P2P Systems with Mobile Phones

The model in Figs. 14.3 and 14.4 can be further modified so that a mobile phone
can access the power of a large P2P system. A mobile phone can only be a client
(but not a server as it lacks computing power). The new model is presented in
Fig. 14.5. The owner of a mobile phone requests a web page from a remote site by
typing the URL (or using a bookmark in the memory of the phone). After obtaining
the web page, the user can then type in the necessary data and send them to the

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

Mobile
phone

GPRS signal

Telephone company
,
s

computer

SMS

Telephone company
,
s

computer

Request to
generate

SMS

Web server

Tasks

Servlet
program

HTTP request

Internet

HTTP request

Figure 14.4. SMS with mobile phone.

Mobile
phone

GPRS signal

Answer
(WAP2 or SMS)

Sub-files

Servlet
program

Web server

Servlet
program

Server 2

Servlet
program

Server 1

Servlet
program

Server n

Sub
-ta

sk

Ans
wer

 of

su
b-

tas
k

Sub-task
Answer of

sub-task

.

.

.

.

User Tier 1 server Tier 2 servers

Sub-task

Answer of
sub-task

Figure 14.5. Wireless model.

194

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:9

Wireless P2P Systems with Mobile Phones 195

tier 1 web server. The tier 1 web server will invoke a servlet that will divide a single
task into many small sub-tasks. These sub-tasks will then be stored as queues on
the hard disk of the system.

The tier 1 server will send an HTTP message to a tier 2 server, which will then
invoke another servlet. The tier 1 server will then transfer a sub-task to the tier
2 server for further computation. Note that there are many tier 2 servers in the
system but only one tier 1 server as shown in Fig. 14.5.

After the computation, the tier 2 server will send the results to the tier 1 server.
The tier 1 server will then send another sub-task to the tier 2 server if the sub-task
queue is not empty. The tier 1 server computer will collect answers of sub-tasks
from all tier 2 servers.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

15
Implementation of Wireless
P2P Systems

15.1 Introduction

In Chapter 14, we discussed methods of developing a wireless P2P model. We will
present the actual implementation in this chapter. Wireless designs allow the users
to access the P2P system with a mobile device such as mobile phone or PDA. They
have the following advantages:

� It is easier to carry a mobile phone than a notebook computer.
� No training is required as almost everyone can use a phone.
� It can access computers behind a firewall.
� There is no need to buy additional equipment because most users have their own

phones.

15.2 Client—Mobile Phone

As discussed in Chapter 14, the memory of a mobile phone is small compared with
a desktop computer. Instead of running a program, users download a WAP page
from the tier-1 server. This page allows the user to type in data for the operation.
As it is more difficult to type in data with a mobile phone, the volume of typing is
minimized in our model. Users need to type in only two items:

� The range of numbers to be added.
� The number of sub-tasks.

The source codes of the web page are presented in Fig. 15.1.

15.3 Tier 1 Server Program—phoneServlet.java

The structure of this program is presented in Fig. 15.2. There are three methods in
the program:

� Init()
� doGet()
� destroy()

196

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Tier 1 Server Program—phoneServlet.java 197

<?xml version=′′1.0′′?>
<HTML>

<HEAD>
<TITLE>Add Numbers</TITLE>

</HEAD>
<BODY>

<FORM ACTION=′′/servlet/phoneServlet′′ METHOD=′′get′′>

Interval
<INPUT TYPE=′′Text′′ NAME=′′interval′′ VALUE=′′ ′′ size=9></INPUT>

number of sub-tasks

<INPUT TYPE=′′Text′′ NAME=′′tasks′′ VALUE=′′ ′′size=5></INPUT>

<INPUT TYPE=′′Submit′′></INPUT>
</FORM>

</BODY>
</HTML>

Figure 15.1. phone.html

phoneServet

doGet() destroy()init()

readIpFile addClientThread5 divide

timer HandleHttpShare2

Figure 15.2. Structure of phoneServlet.java

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

198 15. Implementation of Wireless P2P Systems

The source codes of the java program are presented in Fig. 15.3.
This program has three methods:

1. init().This method reads the phone.txt, which stores the IP addresses of the
available tier-2 computers in the system. The format of this file is similar to the
ip.txt file in previous chapters. For example, the contents for a system with two
tier-2 servers (i.e., 192.168.1.2 and 192.168.1.3) are as follows:

2
192.168.1.2
192.168.1.3

The reading is performed by the following two lines:

readIpFile reader= new readIpFile(ipFile,ip);
numServer = reader.getNumServer();

This file should be stored in the installation directory of the server (e.g.,
c:\tomcat 5.5).

2. doGet(). This method performs the following jobs:
� Read input data from the mobile phone (as in Fig. 14.4) with the following

lines:

String interval=request.getParameter (′′interval′′);
long endPosition= Integer.parseInt(interval); // no. of interval

String tasks=request.getParameter (′′tasks′′);
int totalTasks = Integer.parseInt(tasks); // no. of sub tasks

� Divide the task into sub-tasks (by calling the divide.java module).

divide subTaskArray = new divide(x,endPosition,totalTasks,debug);

� Distribute the sub-tasks to tier-2 server (by calling the addClientThread5.java)
with the following lines:

for (int i=1;i<=numServer;i++)
new addClientThread5(ip[i-1], x, i,totalTasks,answer,debug).start() ;

� Collect the answers of sub-tasks and get the grand total with the following
call:

(long) answer.getAnswer()

� Assemble a WAP page and send it back to the mobile phone with the following
lines:
Note that if you are trying to send a special character “ with the out.print()
method, you need to add a \ in front of ′′.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
public class phoneServlet extends HttpServlet
{

boolean debug = false;
String ipFile= ′′phone.txt′′;
String ip[]=new String[50];
int numServer=0;
public void init() throws ServletException
{

System.out.println(′′***** phone servlet started ******′′);
readIpFile reader= new readIpFile(ipFile,ip);
numServer = reader.getNumServer();
if (debug)

System.out.println(′′number of servers: ′′+ numServer);
if (debug) System.out.println(′′***** reading sucessful ******′′);

}

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

{
String interval=request.getParameter (′′interval′′);
long endPosition= Integer.parseInt(interval); // no. of interval
String tasks=request.getParameter (′′tasks′′);
int totalTasks = Integer.parseInt(tasks); // no. of sub tasks
double x[]= new double[totalTasks*2];

divide subTaskArray = new divide(x,endPosition,totalTasks,debug);
subTaskArray.go();
Share2 answer = new Share2(totalTasks,debug); // control answer update
timer total =new timer(); // timer for transmission + calculation
total.start();
// *************************** create Threads ***************
for (int i=1;i<=numServer;i++)

new addClientThread5(ip[i-1],x, i,totalTasks,answer,debug).start() ;
if (debug) System.out.println(′′wait for connection to complete ′′);
System.out.println(′′********* Answer: ′′+ ′′ *********′′);
total.elasp(′′total time calculation + transmission :′′);
System.out.println(′′program terminated′′);
// send output to the phone
PrintWriter out=response.getWriter();
response.setContentType (′′text/html′′);

out.println(
′′<?xml version=′′1.0′′?>′′

+ ′′<html xmlns=\′′http://www.w3.org/1999/xhtml\′′ xml:lang=\′′en\′′>′′
+ ′′<head>′′
+ ′′<title>Add Numbers</title>′′
+ ′′</head>′′
+ ′′<body>′′
+ ′′<h1>′′

+ ′′Answer: ′′ +(long) answer.getAnswer()

+ ′′</body>′′
+ ′′</html>′′);
}
public void destroy()
{

System.out.println(′′destroy method of PhoneServlet called′′);
}

}

Figure 15.3. phoneServlet.java

199

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

200 15. Implementation of Wireless P2P Systems

Figure 15.4. Screen of emulator.

PrintWriter out=response.getWriter();
response.setContentType (′′text/html′′);
out.println(

′′<?xml version=\′′1.0\′′?>′′

+ ′′<html xmlns=\′′http://www.w3.org/1999/xhtml\′′ xml:lang=\′′en\′′>′′

+ ′′<head>′′

+ ′′<title>Add Numbers</title>′′

+ ′′</head>′′

+ ′′<body>′′

+ ′′<h1>′′

+ ′′Answer: ′′ +(long) answer.getAnswer()

+ ′′</body>′′

+ ′′</html>′′);

3. destroy() method—This method prints one message on the server’s console for
debugging and testing purposes.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Testing the Wireless P2P 201

addServer5

add timer

Figure 15.5. Structure of tier-2 server program.

15.4 Tier-2 Server Side Program

The structure of the tier-2 server side program is the same as model 5 in Chapter 13.
The overall structure of this program has been presented in Fig. 15.5 for readers’
easy reference.

15.5 Tools for Mobile Phone Development

It will be better to test the system with some software tools (phone emulators) than
using your mobile phones in the initial testing phases. The advantages are:

� You can save a lot of money for the GPRS connections.
� It is easier and faster to type in data to the emulators than the real phones.
� You can test a lot of models with different emulators.

Emulators can be obtained from the websites of most phone manufacturers. You
can also get a general-purpose emulator from www.openwave.com which is used
in the examples in this book.

15.6 Testing the Wireless P2P

Testing is simpler than previous models. As everything on the server computer is
controlled by the web server, all we need is to type the data into the phone emulator
(or a real phone with GPRS connection).

1. Copy all programs to the default path of your servers.
2. Make sure that all web servers are running.
3. Edit the phone.txt files with the tier-2 server’s IP addresses. The file should be

stored in the installation directory of the tier-1 server (e.g., c:\tomcat 5.5 for
Tomcat).

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

202 15. Implementation of Wireless P2P Systems

Figure 15.6. Screen of phone (with one server).

15.6.1 Experiment with One Computer

It is easier to start the testing with one computer. A single computer can play the
role of client, tier-1 server and tier-2 server simultaneously.

1. Start the web server.
2. Start the phone emulator.
3. Type the following URL in the emulator as in Fig. 15.4:

http://localhost:8080/phone.html

4. Type in interval and number of sub-tasks (Fig. 15.6).

e.g.,
Interval = 500
number of sub-tasks = 2
The system will add up all numbers from 1 to 500. This adding task will be
divided into two sub-tasks.

5. Click the left button to move from one field to the other. After you type in both
fields, click the left button to submit. Figure 15.7 shows the screen of the phone
emulator. Figure 15.8 shows the screen of the server. The local computer plays
the role of tier-1 and tier-2 server simultaneously.

Figure 15.7. Screen of the phone (with one server).

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Testing the Wireless P2P 203

Figure 15.8. Screen of the server (tier 1 and 2).

15.6.2 Experiment with One Tier-1 Server
and Two Tier-2 Servers

In this example, we use four computers (i.e., one client with the phone emulator,
one tier 1 server and two tier 2 servers).

1. Edit the contents of phone.txt file.

e.g.,
2
192.168.1.2
192.168.1.3

2. Type in http://website:8080/phone.html in the emulator.

e.g.,
http://192.168.1.4:8080/phone.html
where 192.168.1.4 is the IP address of tier 1 server.

3. Type in data as in Fig. 15.9.
4. Click the left key of the phone to submit information to the tier-1 server.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

204 15. Implementation of Wireless P2P Systems

Figure 15.9. Screen of client (with two servers).

Figure 15.10 shows the screen of the phone. Figure 15.11 shows the screen of
tier-1 server. The screen of the first tier-1 server is presented in Fig. 15.12, while
the second tier-2 server is presented in Fig. 15.13.

15.7 Experiments with More Sub-tasks

In this example, we divide the task into four sub-tasks and two tier-2 servers. Each
tier-2 server will get two sub-tasks. Edit the contents of phone.txt file.

1. Edit the contents of phone.txt file.

e.g.,
2
192.168.1.2
192.168.1.3

Figure 15.10. Screen of client (with two servers).

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Experiments with More Sub-tasks 205

Figure 15.11. Screen of tier-1 server.

Figure 15.12. Screen of first tier-2 server.

Figure 15.13. Screen of second tier-2 server.

2. Type in http://website:8080/phone.html in the emulator.

e.g.,
http://192.168.1.4:8080/phone.html
where 192.168.1.4 is the IP address of tier 1 server.

3. Type in data as in Fig. 15.14.
4. Submit data with the left button (Fig. 15.15).

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

206 15. Implementation of Wireless P2P Systems

Figure 15.14. Input screen of phone.

Figure 15.15. Input screen of phone.

Figure 15.16. Screen of tier-1 server.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Conclusions 207

Figure 15.17. Screen of first tier-2 server.

Figure 15.18. Screen of second tier-2 server.

The screen of the tier-1 server is presented in Fig. 15.16. This server collects
four answers from tier-2 servers. The screens of two tier-2 servers are presented
in Figs.15.17 and 15.18. Each server gets two sub-tasks so there are two answers
on their screens. You can check the sequences of the operations according to
Fig. 15.19.

15.8 Conclusions

Although this model is designed with mobile phones in mind, it can be easily
modified so the mobile phone can be replaced with an ordinary computer. The

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

208 15. Implementation of Wireless P2P Systems

Send URL to tier-
1 server

Type in data

Phone

Send data to tier-
1 server

Display answer

Tier-1
server

Get WAP pageURL

WAP page

Interval and
number of sub-

tasks

Send WAP page
to phone

Invoke
phoneServlet

Divide task into
sub-tasks

Collect answers
of sub-tasks

Send grand total
to phone

Tier-2
server

Sub-task
Invoke

addServer5

Add numbers

Grand total

Answer

Figure 15.19. Sequences of operations.

advantage is that there is no need to install any program on the client devices
(mobile phones or computers). It also saves a lot of maintenance work if we have
a large number of clients.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

16
Computer Architecture

16.1 Introduction

As discussed in Chapter 3, simply having a large amount of computers cannot make
computation efficient. Good parallel algorithms are always required. Although we
can design a new parallel algorithm each time, there is a better method. There are
a large number of good parallel algorithms for different kind of parallel computers
in research papers and books. P2P network can be considered as a special kind
of parallel computer architecture. It is possible that we can modify some existing
parallel algorithm for our particular problem. There is no need to start from scratch.

Since parallel algorithms are usually designed for a particular parallel computer
architecture, knowledge of parallel computer architectures is important for the
optimization of algorithm design. This chapter presents the major parallel computer
architectures and discusses their classification, characteristics and performance
metrics.

16.2 Classification of Computer Architectures

Several methods exist for classifying computer architectures. Flynn’s method, first
proposed in 1966, classifies architectures according to the number of instruction
streams and data streams. His method has been extended by several researchers
(Share, 1973; Treleaven et al., 1982; Hockney and Jesshope, 1998). Flynn’s (1966,
1996) classification will be used for our discussion as it is the traditional way to
classify architecture. It is also well known and used by many researchers in this
field.

In Flynn’s taxonomy, computer architectures can be classified according to the
number of instruction and data streams they have and their ability to process
single or multiple data streams simultaneously. There are four possible logical
combinations:

� Single Instruction, single data stream (SISD).
� Multiple instruction, single data stream (MISD).

209

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

210 16. Computer Architecture

Processor
2

Instruction stream

Control
unit

Data stream

Local
memory

Figure 16.1. SISD computer

� Single instruction, multiple data stream (SIMD).
� Multiple instruction, multiple data stream (MIMD).

16.2.1 Single Instruction, Single Data Stream

All conventional von Neumann (Kumar, 1994) architecture computers can be clas-
sified as SISD computers as they have a single CPU (Fig. 16.1). It executes in-
structions from a single instruction stream to manipulate a single data stream. The
CPU in such computers is a complex, contemporary processor.

All serial computers using the von Neumon architecture belong to this group,
which will not be discussed further.

16.2.2 Single Instruction, Multiple Data Streams

SIMD architectures have multiple processors (Fig. 16.2). Each processor is respon-
sible for computing a unique data stream. Only one instruction stream is present,
and each processor executes the same instruction simultaneously. SIMD comput-
ers use a large number of simple custom-built processors, which are less powerful
than contemporary microprocessors. For example, Connect Computer CM-2 used
up to 65500 custom-built 4-bit processors. These processors can only execute a
small set of instructions.

The master control unit of an SIMD computer broadcasts an identical instruction
to all processors. They execute the same instruction simultaneously to their own
data stream. Each processor has its own local memory.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Classification of Computer Architectures 211

Processor
2

Processor
1

Processor
n

Shared memory
D

ata stream
 1

D
a
ta

 stre
a
m

 2

......

D
ata stream

 n

Master
control

unit

Instruction stream

Figure 16.2. SIMD computer

16.2.3 Multiple Instruction, Single Data Stream

The MISD architecture consists of multiple processors. Each processor executes
its own unique set of instructions (Fig. 16.3). However, all processors share a
single common data stream. Different processors execute different instructions
simultaneously to the same data stream. No practical example of a MISD has been
identified to date, and this architecture remains entirely theoretical.

16.2.4 Multiple Instruction, Multiple Data Streams

The MIMD architecture consists of a number of processors. They can share and
exchange data. Each processor has its own instruction and data stream, and all
processors execute independently. The processors used in MIMD computers are
usually complex contemporary microprocessors.

The MIMD architecture is becoming increasingly important as it is generally
recognized as the most flexible form of parallel computer (Kumar, 1994). A col-
lection of heterogeneous computers interconnected by a local network conforms
to the MIMD architecture.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

212 16. Computer Architecture

Processor
2

Processor
1

Processor
n

Shared memory

......

Control
unit

Instruction stream 2

Control
unit

Control
unit

Instruction stream nInstruction stream 1

Data stream

Figure 16.3. MISD computer

MIMD computers are significantly more difficult to program than traditional
serial computers. Independent programs must be designed for each processor. The
programmer needs to take care of communication, synchronization and resource
allocation. MIMD architecture can be further divided into three categories accord-
ing to the method of connection between memory and processors.

16.2.4.1 Multicomputer (Distributed Memory Multiprocessor)

There is no global memory in Multicompter. Each processor has its own local
memory and works like a single-processor computer. A processor cannot read
data from other processors’ memory. However, it can read its own memory and
pass that data to another processor.

Synchronization of processes is achieved through message passing. They can be
scaled up to a large number of processors. Conceptually, there is little difference
between the operation of a distributed memory multiprocessor and that of a col-
lection of different computers operating over a local network or Internet/Intranet.
Thus, P2P network can be considered as multicomputer (Fig. 16.4).

16.2.4.2 Loosely Coupled Multiprocessor (Distributed
Shared Memory Multiprocessor)

A well-known example (Stone, 1980) of a loosely coupled multiprocessor is Cm*
of Carnegie-Mellon University. Each processor has its own local memory, local

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Granularity 213

Processor
2

Processor
1

Processor
n

Network without shared memory

......

Control
unit

n

Instruction stream 2

Control
unit

2

Control
unit

1

Instruction stream nInstruction stream 1

Data stream nData stream 2 Data stream 1

Local
memory

1

Local
memory

2

Local
memory

n

Communications with
other processors Communications with

other processors

Figure 16.4. Multicomputer

I/O devices and a local switch connecting it to the other parts of the system. If the
access is not local, then the reference is directed to search the memory of other
processors. A large number of processors can be connected (Quinn, 1994) as there
is no centralised switching mechanism.

16.2.4.3 Tightly Coupled Multiprocessor (Shared Memory Multiprocessor)

There is a global memory that can be accessed by all processors. Different proces-
sors use the global memory to communicate with each other (Fig. 16.5). Existing
sequential computer programs can be modified easily (Morse, 1994) to run on
this type of computer. However, locking mechanisms are required as memory is
shared. A bus is required to interconnect processors and memory so scalability is
limited by bus contention.

16.3 Granularity

Granularity is the amount of computation in a software process. One way to mea-
sure granularity is to count the number of instructions in a program. The parallel
computers are classified as coarse grain and a fine grain computer.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

214 16. Computer Architecture

Processor
2

Processor
1

Processor
n

Shared memory / network

......

Control
unit

n

Instruction stream 2

Control
unit

2

Control
unit

1

Instruction stream nInstruction stream 1

Data stream

Figure 16.5. MIMD computer (tightly coupled multiprocessor).

16.3.1 Coarse Grain Computers

Coarse grain computers use small numbers of complex and powerful microproces-
sors, e.g., the Intel iPSC which used a small number of Inteli860 microprocessors,
and the Cray Computer which offers only a small number of processors. How-
ever, each processor can perform several Gflops (one G-flop = 109 floating point
operations).

16.3.2 Fine Grain Computers

Another choice is to use relatively slow processors, but the number of processors
is usually large, e.g., over 10,000. Two SIMD computers, Mar MPP and CM-2, are
typical examples of this design. They can use up to 16,384 and 65,536 processors.
This kind of computer is classified as a fine grain computer.

16.3.3 Effect of Granularity and Mapping

Some algorithms are designed with a particular number of processors in mind. For
example, one kind of algorithm maps one set of data to a processor.

Algorithms with independent computation parts can be mapped by another
method. An algorithm with p independent parts can be mapped easily onto p
processors. Each processor performs a single part of the algorithm. However,

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Processor Networks 215

if fewer processors are used, then each processor needs to solve a bigger part
of the problem and the granularity of computation on the processors is increased.
Using fewer than the required processors for the algorithm is called ‘scaling down’
the parallel system. A naive method to scale down a parallel system is to use
one processor to simulate several processors. However, the algorithm will not
be efficient using this simple approach. The design of a good algorithm should
include the mapping of data/computation steps onto processors and should include
implementation on an arbitrary number of processors.

16.4 General or Specially Designed Processors

Some systems use off-the-shelf processors for their parallel operations. In other
words, those processors are designed for ordinary serial computers. Sequent com-
puter use general purpose serial processors (e.g., Intel Pentium for PC) for their
system. The cost is quite low compared with other special processors as these
processors are produced in large volume. However, they are less efficient in terms
of parallel processing when compared with specially designed processors such as
transputers.

Some processors are designed with parallel processing in mind. The transputer
is a typical example. The processors can handle concurrency efficiently and com-
municate with other processors (Hinton and Pinder, 1993) at high speed. However,
the cost of this kind of processor is much higher than general-purpose processors
as their production volume is much lower.

16.5 Processor Networks

To achieve good performance in solving a given problem, it is important to select an
algorithm that maps well on to the topology used. One of the problems with parallel
computing is that algorithms are usually designed for one particular architecture.
A good algorithm on one topology may not maintain its efficiency on a different
topology. Changing the topology often means changes to the algorithm.

The major networks are presented in this section and discussed using the follow-
ing properties–diameter, bisection width and total number of links in the systems.
The definitions of these properties are as follows:

� Diameter–If two processors want to communicate with each other and a direct
link between them is not available, then the message must pass via one or more
processors. These processors will forward the message to other processors until
the message reaches the destination. The diameter is defined as the maximum
number of intermediate processors that can be used in such communications.
Performance of parallel algorithms will deteriorate for high diameters because it
increases the amount of time spent in communications between processors. On
the other hand, lower diameter will reduce communication overhead and will
ensure good performance.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

216 16. Computer Architecture

� Bisection width—Bisection width is the minimum number of links which must
be removed so as to split a network into two halves. A high bisection width
is better because more paths are still available between these sub-networks.
Obviously, it is better to have more connection paths, which can improve the
overall performance.

� Total number of links in the system—Communication between processors will
usually be more efficient when there are more links in the system. The diameter
will be reduced as the number of links grows. However, it is more expensive to
build systems with more links.

A discussion of major processor networks is presented in Sections 16.5.1 to
16.5.6. The summary of the characteristics of these networks is presented in
Section 16.5.7.

16.5.1 Linear Array

The processors are arranged in a line as shown in Fig. 16.6. The diameter is
p − 1, and only two links are required for each processor. The transputer education
kit is a typical example of this category. It is used for some low-cost education
systems. It has only two links in each processor, and the cost is much lower than
regular transputers which have four links (Hinton and Pinder, 1993). This kind of
architecture is efficient when the tasks that make up the algorithm process data in
a pipeline fashion.

� The advantage is that the architecture is easy to implement and inexpensive.
� The disadvantage is that the communication cost is high.

16.5.2 Ring

Processors are arranged as a ring as in Fig. 16.7. The connection is simple and
easy to implement. The diameter may still be very large when there are a lot of
processors in the ring. However, the performance of a ring is better than linear
array for certain algorithms.

The advantage is that
� the architecture is easy to implement and
� the diameter is reduced to p/2 (compared with a linear array).

The disadvantage is that the communication cost is still high.

Figure 16.6. Linear array

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Processor Networks 217

Figure 16.7. Ring.

16.5.3 Binary Tree

Each processor of a binary tree has at most three links and can communicate with
its two children and its parent. Figure 16.8 shows a binary tree with depth 3 and
15 processors. The binary tree has a low diameter but a poor bisection width. It
suffers from the problem that a communication bottleneck will occur at the higher
levels of the tree.

Advantages
� The architecture is easy to implement.
� The diameter is small (compared with a linear array and ring).

Root

Figure 16.8. Binary tree with depth 3 and size 15.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

218 16. Computer Architecture

Processor
4,1

Processor
4,2

Processor
4,3

Processor
4,4

Processor
3,1

Processor
3,2

Processor
3,3

Processor
3,4

Processor
2,1

Processor
2,2

Processor
2,3

Processor
2,4

Processor
1,1

Processor
1,2

Processor
1,3

Processor
1,4

Figure 16.9. Two-dimensional mesh.

Disadvantages
� Bisection width is poor.
� It is thus difficult to maintain ‘load balancing’.
� The number of links per processor is increased to three (i.e., one more link

than the linear array).

16.5.4 Mesh

Processors are arranged into a q-dimensional lattice. Communication is only al-
lowed between adjacent processors. Figure 16.9 shows a two-dimensional mesh.
A large number of processors can be connected using this method. It is a popular
architecture for massively parallel systems. However, the diameter of a mesh could
be very large.

There are variants of mesh. Figure 16.10 shows a wrap around model that allows
processors on the edge to communicate with each other if they are in the same
row or column. Figure 16.11 shows another variant that also allows processors on
the edge to communicate if they are in an adjacent row or column. Figure 16.12
shows the X-net connection. Each processor can communicate with its eight nearest

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Processor Networks 219

Processor
1,1

Processor
1,2

Processor
1,3

Processor
1,4

Processor
2,1

Processor
2,2

Processor
2,3

Processor
2,4

Processor
3,1

Processor
3,2

Processor
3,3

Processor
3,4

Processor
4,1

Processor
4,2

Processor
4,3

Processor
4,4

Figure 16.10. Mesh with wrap around connection on the same row.

neighbours instead of four in the original mesh design. It is obvious that the X-net
has the smallest diameter, but additional links per processor are required to build
the system. Mesh topologies are often used in SIMD architectures.

Advantages
� The bisection width is better than that of binary tree.
� A large number of processors can be connected.

Disadvantages
� It has high diameter.
� The number of links per processor is four (i.e., one more link than the binary

tree).

16.5.5 Hypercube

A hypercube is a d-dimensional mesh, which consists of 2d processors.
Figures 16.13 to 16.17 show hypercubes from 0 to 4 dimensions. A d-dimensional

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

220 16. Computer Architecture

Processor
1,1

Processor
1,2

Processor
1,3

Processor
1,4

Processor
2,1 2,2 2,3

Processor
2,4

Processor
3,1

Processor
3,2

Processor
3,3

Processor
3,4

Processor
4,1

Processor
4,2

Processor
4,3

Processor
4,4

Processor Processor

Figure 16.11. Mesh connection with wrap around for adjacent rows.

hypercube can be built by connecting two d − 1 dimensional hypercubes. The
hypercube is the most popular (Moldovan, 1993) topology because it has the
smallest diameter for any given number of processors and retains a high bisection
width. A p-processor hypercube has a diameter of log2 p and a bisection width
of p/2 (Hwang and Briggs, 1984). A lot of research has been done on the
hypercube.

Advantages
� The number of connections increases logarithmically as the number of pro-

cessors increases.
� It is easy to build a large hypercube.
� A hypercube can be defined recursively.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Processor Networks 221

Processor
4,1

Processor
4,2

Processor
4,3

Processor
4,4

Processor
3,1

Processor
3,2

Processor
3,3

Processor
3,4

Processor
2,1

Processor
2,2

Processor
2,3

Processor
2,4

Processor
1,1

Processor
1,2

Processor
1,3

Processor
1,4

Figure 16.12. Mesh with X-connection.

� Hypercube has a simple routing scheme (Akl, 1997).
� Hypercube can be used to simulate (Leighton, 1992) many other topologies

such as ring, tree, etc.
Disadvantages

� It is more expensive than line, ring and binary tree.

16.5.6 Complete Connection

This connection has the smallest diameter (i.e., 1). It has the highest bisection
width and total number of links compared with other network topologies (Leighton,
1992). However, the required number of links per processor becomes extremely

Figure 16.13. Zero-dimensional hypercube.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

222 16. Computer Architecture

Figure 16.14. One-dimensional hypercube.

Figure 16.15. Two-dimensional hypercube.

Figure 16.16. Three-dimensional

hypercube.

Figure 16.17. Four-dimensional hypercube.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Processor Networks 223

3

2

5

4

8

1

6

7

Figure 16.18. Complete

connection (eight processors).

large as the number of processors increases (Fig. 16.18), thus it cannot be used for
large systems.

Advantages
� The diameter is the smallest (i.e., 1).
� It has the highest bisection width and number of links.

Disadvantages
� The requirement for the number of links per processor is p − 1 so this archi-

tecture is difficult to implement for large systems.

16.5.7 Summary of Characteristics of Network Connections

Linear array is the simplest network. It is easy to implement and inexpensive. Only
two links are required for each processor. Although the architecture is simple, it can
still support a rich class of interesting and important parallel algorithms (Leighton,
1992). However, it has a large diameter in a large system.

By connecting the two ends of the linear array, a ring can be formed. The diameter
is reduced to half. However, its diameter is still not good for large systems.

By increasing the number of links per processor to three (i.e., one more link
than the linear array), a binary tree can be built. Its diameter is better than that of a
ring. However, the processor at the higher levels might be much busier than other
processors at the lower levels. It is difficult to maintain ‘load balancing’.

Two-dimensional mesh is a very common architecture for massively parallel
computers. The number of links per processor is four (i.e., one more link than the
binary tree). The bisection width is better than that of binary tree. However, it has
high diameter for systems with large numbers of processors.

The number of links per processor for hypercube is log2 p. As indicated in
Table 16.1, its diameter and bisection width are better than those of mesh.

The complete connection architecture is the best in terms of diameter, bisection
width and total number of links. However, it is extremely difficult to build a large
system with such architecture.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

224 16. Computer Architecture

Table 16.1. Characteristics of processor organizations

Total number

No. of links per Bisection of links in

Organization processor Diameter width system

Linear array 2 p − 1 1 p − 1

Ring 2 p/2 2 P
Binary tree 3 2 log2((p+1)/2) 1 p − 1

two-dimensional mesh 4 2(
√

p − 1)
√

p 2(p − √
p)

Hypercube log2 p log2 p p/2 (p log2 p)/2

Complete connection P − 1 1 p2/4 p(p − 1)/2

The characteristics (Hwang, 1993) of the above processor organizations can be
summarized in Table 16.1.

16.6 Shared Memory Connection

Shared memory can be accessed by more than one processor. We will discuss two
major connection methods:

� Bus and
� Crossbar switch.

16.6.1 Bus

Every processor and memory module in the system is connected to a bus
(Fig. 16.19). For example, a sequent computer uses this kind of connection. Bus
contention will be serious for systems with a large number of processors and ac-
tivities in the system. Thus, this connection cannot be used (Fountain, 1994) for a
massively parallel system.

16.6.2 Crossbar Switch

A crossbar switch improves performance when there is more than one memory
module; thus it has better performance than the bus organization under these con-
ditions (Fig. 16.20). Crossbar architectures provide fast communication (Zomaya,
1995) but are relatively expensive. Switching time is an additional overhead for
the system.

16.7 Summary

A parallel system consists of a parallel algorithm and the parallel architectures on
which it is implemented. Its performance depends on a design that balances hard-
ware and software. Computer classification methods and architectures of different

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Summary 225

Memory
1

Memory n
Memory

2

Bus

Processor
1

Processor
2

Processor
n

Figure 16.19. Bus

Switch

Processor
2

Processor
1

Processor
n

Memory
1

Memory
2

Memory
n

Figure 16.20. Crossbar switch.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

226 16. Computer Architecture

computers have been discussed. The processor networks were compared accord-
ing to their diameter, bisection width and number of links. Granularity, choice
of processors and shared memory connection methods have also been presented
as they affect the design of parallel algorithms. There is no single network that
is generally considered best (Siegel, 1992). The cost-effectiveness of a network
depends on a large number of factors discussed in this chapter.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

17
Distributed and Parallel Algorithms

17.1 Introduction

Many parallel algorithms are derived from serial algorithms. Thus, it is worthwhile
to examine serial algorithms before we design our new parallel algorithms. This
approach has the following advantages:

� There are a lot of serial algorithms.
� The behaviours of these algorithms have been extensively studied and docu-

mented.
� Some of them can be converted to parallel algorithms with minimum efforts.

However, good serial algorithms might not be good candidates for paral-
lel/distributed conversion. Some efficient serial algorithms might become ineffi-
cient if we are not careful in the conversion process. In this chapter, we will discuss
what can go wrong in this process. Sorting algorithms are chosen as examples in
our discussion for the following reasons:

� Everyone knows what sorting is. The idea is simple and sometimes we need to
perform it manually (e.g., playing games of cards). Thus, we can concentrate on
the discussion of algorithm development.

� Although the concepts of sorting are simple, the evaluation of this class of
algorithms is not.

� The sorting process (Aba and Ozguner, 1994; Shaffer, 1997) is executed many
times a day in the data-processing function of almost every organization as even
trivial operations with databases often involve sorting (Rowe, 1998; Moffat and
Peterson, 1992). For example, printing a report or processing a simple query
will probably involve sorted output.

� Many organizations now have very large files, and terabyte databases are be-
coming more and more common (Sun, 1999). Any improvement in sorting will
tend to improve the speed of other processes such as searching, selecting, index
creation, etc.

� Many other algorithms have a sorting process so that later operations can be per-
formed efficiently. Examples (Quinn, 1994) include data movement operations

227

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

228 17. Distributed and Parallel Algorithms

for problem solving in graph theory, computational geometry and image pro-
cessing in optimal or near optimal time.

The principles of serial sorting algorithms are presented, and their methods
in reducing exchanges, comparisons, memory requirements are discussed in this
chapter. Parallel sorting algorithms are presented, and it is shown how they differ
from serial algorithms.

17.2 Overview of Serial Sorting

In this section, major serial sorting algorithms are presented so that the character-
istics of serial and parallel sorting algorithms can be compared in latter sections.
Measuring factors in serial sorting will also be discussed so that they can be com-
pared with the factors of their parallel counterpart.

17.2.1 Insertion Sort

Insertion sorting is based on the ‘bridge player’ method (Knuth, 2005). Many
players sort their hands by examining one card at a time. Each time they get
one more card, and they insert it into a group of cards which has already been
sorted. This process is repeated until all cards are sorted. An example is presented
next.

Original sequence

16 11 45 88 34

� First round
◦ Compare first number with second number.
◦ Exchange the position of first and second number as 11 is smaller than 16.

11 16 45 88 34

� Second round
◦ Compare second number with third number.
◦ No need to exchange positions as 16 is smaller than 45.

11 16 45 88 34

� Third round
◦ Compare third number with fourth number.
◦ No need to exchange positions as 16 is smaller than 45.

11 16 45 88 34

� Fourth round

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Overview of Serial Sorting 229

◦ Compare the fourth number with the fifth number.
◦ Exchange positions of these two numbers as 34 is smaller than 88.

11 16 45 34 88

◦ Compare the third number with the fourth number.
◦ Exchange positions of these two numbers as 34 is smaller than 88.

11 16 34 45 88

◦ Compare the second number with third number. As 16 is smaller than 45,
there is no need to swap. The sorting is complete.

Measurement of sorting algorithms—From the above algorithm, there are two
major overheads:
� Number of comparisons.
� Number of swaps.

This method (McCracken and Salmon, 1989) has different performance under
different cases. The numbers of comparisons required to sort a file with n keys
in these cases are as follows:
◦ Best case

� Number of comparison required is n − 1.
� Condition is that the original file is already sorted (in ascending order).

◦ Average case
� Number of comparisons and swaps required is n2/4 comparisons.
� Condition is that the original file is not in any particular order.

◦ Worst case
� Number of comparisons and swaps required is n2/2 comparisons
� Condition is that the original file is in descending order.

The disadvantage of this method is that:

� the number of comparisons and swaps grows quickly when n is a large number.
It is not suitable for big files.

The advantages are that

� it is easy to write the program (less than 10 statements) for this algorithm.
� additional memory is not required for this process.

17.2.2 Shellsort

The insertion sort is inefficient because it compares only neighbours. If a key is not
in the right place, it is moved by a process of comparing and swapping adjacent
keys. If this key is far away from its correct position, this process can be very time
consuming as there are a large number of swaps and comparisons.

Shell (1959) proposed the Shellsort, which is a modification of insertion sort.
Shellsort solves the aforementioned problem by comparing keys at a distance. For

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

230 17. Distributed and Parallel Algorithms

example, the key in the first position is compared to the key in fourth position.
The fourth key is compared with the seventh key. If the key in a lower position is
bigger than the key in a higher position, they exchange their positions. Keys can
be moved to the correct position at a faster speed than the insertion sort.

An example is given next.

45 12 4316 11 88 34 25 33
� First round—step 1. We use insertion sort to sort the first, fourth and seventh

keys (i.e., 16, 88.25).

16 11 45 25 34 12 88 33 43

� First round—step 2. The second, fifth and eighth keys are sorted.

16 11 45 25 34 12 88 33 43

� First round—step 3. The third, sixth and ninth keys are sorted.

16 11 12 25 34 43 88 33 45

� Second round—step 1. After the sorting of sub-files, the algorithm uses sub-files
with a distance of two. The sub-list with the first, third, fifth, seventh and ninth
keys is sorted with insertion sort.

12 11 16 25 34 43 45 33 88

� Second round—step 2. The sub-list with the first, third, fifth, seventh and ninth
keys is sorted with insertion sort.

12 11 16 25 34 33 45 43 88

� Third round. The whole list is sorted with insertion sort.

12 11 16 25 34 33 45 43 88

There are several improved versions (Knuth, 2005; Weiss, 1991) of Shellsort.
The analysis of this algorithm is extremely difficult, but a empirical study (Weiss,
1991) suggested that the complexity of this algorithm is in the range of O(n1.16)
to O(n1.25).

Advantages
� Its efficiency is better than other algorithms when the file is nearly sorted.
� Its performance is rather stable compared with other algorithms. Thus, it is a

good algorithm for critical applications which cannot tolerate even occasional
poor performance.

� Additional memory is not required for the sorting process.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Overview of Serial Sorting 231

Disadvantage
� It is one of the fastest sorting algorithms.

17.2.3 Quicksort

Quicksort is a ‘partition’ sorting method; the original file is partitioned into two
sub-files. These sub-files can then be sorted independently with the same tech-
nique. This ‘divide and conquer’ technique reduces the size of the file recursively
and thus reduces the number of comparisons and number of swaps effectively.

In the quicksort algorithm, a key value (the pivot) will be selected and used to
partition the file into two sub-files. The choice of pivot is important because it
affects the efficiencies of the process. The ideal situation is that a pivot can divide
the file into two equal (or almost equal) sub-files. There are many methods to select
the pivots. We present an example as follows:

Original sequence is given as

16 11 45 88 34 12 25 33 43

� First round
◦ The first item ‘16’ is used as pivot.

16 Pivot

11 12 45 88 34 25 33 43

 Left sub-file Right sub-file

� Second round
◦ The second item ‘45’ is used as pivot.
◦ Sorting of the right sub-file can be achieved by a single swap.

16 Pivot

11 12 45 Second pivot

34 25 33 88 43

� Third round

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

232 17. Distributed and Parallel Algorithms

◦ The item ‘34’ is used as pivot.

16 Pivot

11 12 45 Second pivot

34 Third pivot 43 88

25 33

� The above list is sorted after three rounds.

11 12 16 25 33 34 43 45 88

We will have the best case if the sizes of two sub-files are equal in every round.
On the other hand, the algorithm will hit the worst case if there is only one sub-file
as in the third round of the aforementioned case.

There are many works (Loo, 1990; Motzkin, 1983; Poon and Jin, 1986; Scowne,
1956; Van Emden, 1970; Zhang, 1990) on the improvement of Quicksort. These
projects aimed to improve the average case performance. On the other hand,
some projects (Cook, 1980; Sedgewick, 1975; Wainwright, 1985) aimed to re-
duce the probability of hitting the worst cases by devising better methods to select
a good pivot.

Quicksort is, on average, the fastest (Weiss, 1991) known sorting algorithm
for large files. Its behaviour has been intensively studied and documented (Eddy,
1995; Sedgewick, 1977, 1997). Quicksort’s average running time requires 2n log2 n
comparisons and has time complexity of O(n log2 n). However, time complexity
increases to O(n2) for the worst case.

Advantages
� It is considered to be one of the fastest sorting algorithms (in terms of average

case performance).
� Additional memory is not required for the sorting process.

Disadvantages
� Occasionally, the performance of Quicksort is very poor.
� The coding of the program is tricky, especially if you want to minimize the

chance of hitting the worst cases.

17.2.4 Linear Probing Sort

This algorithm is specially designed for sorting n numbers, which are uniformly
distributed (Dobosiewicz, 1978). It requires an additional memory of the order of

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Overview of Serial Sorting 233

125% of the original file size. A special function is used to distribute the numbers
into the auxiliary storage, and an overflow area is also used.

The average case complexity is O(n). However, the performance deteriorates
(Dobosiewicz, 1991) when the original file is not uniformly distributed. The worst
case complexity of this algorithm is O(n2). The large amount of additional memory
is a major weakness for this algorithm.

Advantage
� The algorithm is faster than most algorithms when the file is uniformly dis-

tributed.
Disadvantages
� Large amount of additional memory is required.
� It is not suitable for files that are not uniformly distributed.

The coding of program is tricky, especially if you want to minimize the oppor-
tunity of hitting the worst cases.

17.2.5 Distributive Partition Sort

Distributive partition sort (Dobosiewicz, 1978) is a sorting method which sorts n
items with an average time of O(n) for uniform distribution of keys. The worst-case
performance is O(n log2 n), and it needs an additional memory storage of O(n)
for the process. An example of this sorting process is shown in Fig. 17.1.

A special distribution algorithm (Allision, 1982; Meijer and Akl, 1982) is used
to distribute items into bins. After the distribution phase, all items in bin i will be
greater than items in bin j (where i > j). There are several improved versions of
this algorithm. Double distributive partitioning sort (Janus and Lamagna, 1985)
is one of the improved versions which avoids the poor performance on certain
distributions. Thus, it maintains a more stable performance for different types of
key distribution.

A major weakness of this algorithm is the requirement for a large amount of
additional memory storage (i.e., 2n memory is required, while other algorithms
such as Quicksort or Shellsort need n memory for a file with n keys).

� Advantage: The algorithm is stable.

16 11 45 88 34 12 25 33 43

16 11 12 34 25 33 45 88 43

Bin 1 Bin 2 Bin 3

Figure 17.1. Operations of distributive partition sort.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

234 17. Distributed and Parallel Algorithms

Table 17.1. Summary of sorting algorithms performance

Additional

Average case Worst case memory

Algorithms time complexity time complexity required

Quicksort O(n log2 n) O(n2) None

Insertion sort O(n2) O(n2) None

Shellsort ∼O(n1.2) ∼O(n1.2) None

Linear probing O(n) O(n2) O(n)

Distributive partition sort O(n) O(n log2 n) O(n)

� Disadvantage: Large amount of additional memory is required.

17.3 Characteristics of Sorting Algorithms

The characteristics of the discussed algorithms are summarized in Table 17.1.
It is easy to write and debug an insertion sort program. However, its performance

is very poor for large files. Shellsort modifies the insertion sort and improves the
performance substantially. Although its performance is the best, it is very stable.
Shellsort is a good algorithm for applications that need predictable performance
at all time.

On the other hand, the average performance of Quicksort is faster than Shellsort.
It is considered to be one of the fastest algorithms in term of average case per-
formance. However, occasionally Quicksort’s performance will be very poor (i.e.,
when the input file is nearly sorted). The Quicksort algorithm is a good algorithm
for applications that need the best average performance. At the same time, these
applications must be able to tolerate poor performance in some rare cases.

Linear probing and distributive partition sort have good average performance.
However, the large amount of additional memory required is a major problem of
these algorithms. They are not suitable for computer system with small amounts
of memory and big files.

17.4 Parallel Sorting Algorithms for MIMD
with Shared Memory

It is more difficult to measure parallel algorithms. The number of processors, mem-
ory architectures, communication methods, etc., can all affect the performance of
an algorithm. Other issues, such as bus contention, queue delay and synchroniza-
tion, make it more complicated so it is more difficult to measure and compare
different algorithms. Thus the design of parallel sorting has attracted a lot of re-
search in the past decade. Although much effort has already been spent on this area,
efficient sorting algorithms are still required to utilize fully the power of parallel
computers.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Parallel Sorting Algorithms for MIMD with Shared Memory 235

We will now present two parallel sorting algorithms to demonstrate what can
go wrong.

17.4.1 Parallel Quicksort

A parallel Quicksort algorithm works as follows:

In the beginning, one processor is used to divide the file into two sub-files. The
processor will keep one sub-file and pass the other sub-file to an idle processor.

In the second round, two processors are busy. At the end of round 2, there will
be four sub-files. Two more idle processors will be assigned for the sub-tasks.
These processes will repeat until all processors get their own sub-files. Each
processor will then sort their sub-files recursively using serial Quicksort.

Quicksort (Hoare, 1961) is a well-known and very efficient sorting algorithm
for serial computers. However, a parallel Quicksort algorithm has low parallelism
at the beginning of its execution and high parallelism at the end (Quinn, 1988).
A lot of processors will be idle (Lorin, 1975) at the early phases of the sorting
process, thus it cannot provide a good ‘speedup’.

Parallel Quicksort (Brown, 1993; Loo, 1993; Loo and Yip, 1991; Quinn, 1988,
1994) has the following characteristics:

� A lot of processors are idle at the beginning of the process.
� All processors are busy at the end of the process.
� Suffers from ‘load balancing’ problems as many processors are idle in the initial

steps of the process.
� Poor speedup.

17.4.2 Parallel Shellsort

As discussed in the example of Section 17.2.2, there are sub-files in different
rounds:

� First round—three sub-files.
� Second round—two sub-files.
� Third round—one file only.

A simple conversion of Shellsort is to use three processors to sort the sub-files
in the first round. In the second round, we use two processors. Only one process
is used in the last round.

This design (Quinn, 1994) has very high parallelism at the beginning of its
execution so it is better than Quicksort. However, it has very low parallelism
at the end and thus it does not eliminate the ‘load imbalance’ problem. In term
of parallelism level, it is similar to Quicksort. Furthermore, parallel Shellsort is
inferior to parallel Quicksort because Shellsort has higher time complexity than
Quicksort. According to Quinn’s (1994) empirical study, the speedup of the parallel
Shellsort algorithm is poor.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

236 17. Distributed and Parallel Algorithms

17.4.3 Possible Improvement

Both parallel Quicksort and parallel Shellsort suffer from the problem of uneven
workload between processors. As Quicksort has better average performance than
Shellsort, many researchers have designed ways to overcome these problems. We
will discuss the basic idea of an improved version of parallel Quicksort in this
section.

We have p processors to sort n keys. The idea is to partition the input file into
hopefully p equal-sized sub-files according to the known distribution of the keys.
Sub-files will then be handled by each processor and sorted independently. The
algorithm has three phases:

Phase one—this phase comprises two sub-steps.
Step 1: There are p pivots which are used to separate the file into p sub-files.

Only one processor is used to calculate all pivots (refer to Section 17.4.3.1
for the calculation of the pivot).

Step 2: p processors concurrently count the numbers of keys which fall into the
p ranges. The results are merged to obtain the actual number of keys in each
range.

Phase two—concurrently, each processor i extracts all keys which fall into the
range (Pivoti, Pivoti+1) from the input file, and forms a sub-file. This results in
a new file which consists of p sub-files. After this phase, every key element X
in sub-file i will satisfy the following conditions:

X ≥ for Pivoti−1 and X < Pivoti for sub-file i, when p − 1 > i ≥ 0

Or

X < for Pivoti for sub-file i, when i = 1

Phase three—concurrently, each processor sorts a sub-file in the newly generated
file by either a statistical sorting method (Loo, 1989) or other powerful sorting
methodologies.

Each processor divides its own sub-file into two smaller sub-files. It stores one
sub-file in a global queue and keeps the other sub-file. This iteration is repeated
until it has no more sub-files to keep, and then it will pick up a sub-file from the
global queue and start this process again. This method maintains even workload
between processors when the distribution of the keys is slightly different from our
assumption.

17.4.3.1 Calculation of Pivots

Pi can be calculated with the following formula if the keys follow uniform distri-
bution:

Pi = Min + (Max−Min) ∗ i /n

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Parallel Sorting Algorithms for MIMD with Shared Memory 237

Y1 YpY3Y2

Pivot(1) Pivot(2) Pivot(3) Pivot(p–1) Pivot(p)

.

Figure 17.2. Schematic diagram of the calculation of pivots.

where Max is the Maximum value of keys, Min is the Minimum value of keys and
n is the number of processors in the system. A schematic diagram is presented in
Fig. 17.2. Yi is the sub-file after phase 1.

This formula can still be used for non-uniform distribution. However, pre-
processing is required to map the non-uniform distribution to uniform distribution.
Before the sorting starts, a cumulative distribution table should be built using the
method specified in many standard statistics textbooks. The pivot used in this algo-
rithm can be found by mapping to the cumulative distribution table. A schematic
diagram for the mapping is presented in Fig. 17.3. In this figure, we split the
file equally over five processors. We maintain the ‘load balance’ by allocating
approximately equal numbers of keys to each processor.

17.4.3.2 Performance

Additional storage of n keys is required only at phase 2 and thus the storage require-
ment is 2n. However, the storage of the old array will be released after this phase.

This algorithm has the following properties:

� Better than parallel Quicksort algorithm on average.
� Easily applied to difference kinds of distribution pattern of the input data file.

1

0.8

0.6

0.4

0.2

0

Cumulative
distribution

Key value of
uniform

distribution

1

0.8

0.6

0.4

0.2

0

Cumulative
distribution

Key value of non-
uniform distribution

Key range of
processor 1

Key range of
processor 2

Key range of
processor 3

Key range of
processor 4

Key range of
processor 5

Figure 17.3. Mapping of non-uniform distribution.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

238 17. Distributed and Parallel Algorithms

� Eliminates the low amount of parallelism at the beginning of parallel Quicksort
algorithm.

� Has a good speedup.

17.5 Parallel Sorting Algorithms for MIMD
with Distributed Memory

Since the final sorted file is distributed over different local memory/computers, a
new definition of sorting is required. The sorting model is briefly described in the
next section.

17.5.1 Definition of Distributed Sorting
� A large file is physically distributed in the local memory of p processors.
� n records are approximately evenly distributed in p processors (i.e., n/p records

for each processor).
� No processor has enough resources to collect all keys and sort the file locally

(or do it efficiently).

We denote the elements in the file as X(i , j), where i is the processor number
and j—is an integer from 1 to n/p. The objective of sorting is to rearrange X(i , j)
elements so that the elements will be in the following order:

X(i, 1) < X (i, 2) < · · · < X(i, n/p)

and

X(k, n/p) < X(k + 1, 1)

where k is an integer from 1 to p.

Communication time is usually much longer than computation time in the ex-
ecution of algorithms for distributed memory environments. The communication
time is thus a major criterion for measuring the performance of a distributed algo-
rithm. Therefore, reducing the number of communication messages and volume
of transmissions has become the focus of research (Dechter and Kleinrock, 1986;
Huang and Kleinrock, 1990; Loo and Ng, 1991; Loo et al., 1995; Wegner 1982).

17.6 Conclusions

The design of any parallel algorithms will be strongly influenced by the architecture
of the computers on which they are to be run. Different priorities will be used in
different computer systems.

In MIMD with shared memory, particular attention will be paid to ensure that the
processors will be fully utilized. Locking and synchronization overheads should
be reduced in the design.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Conclusions 239

In MIMD with distributed memory, the time for processing the data items is
usually much less than the communication time. Thus, the communication time is
the most important factor for these kinds of systems.

As we can see from the aforementioned discussion, parallel sorting algorithms
are more complicated than serial algorithms. In addition to the factors considered
in serial algorithms, additional factors must be addressed in the design process.
Those factors are summarized as follows:

� Number of processors required.
� Speedup, scaleability and efficiency.
� Idle time of processors and load balancing between processors.
� Memory contention or conflict.
� Task creation and allocation to processors.
� Locking, synchronization and task scheduling method.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

18
Infrastructure and Future Development

18.1 Infrastructure

Building reliable automobiles alone will not solve the transportation problems.
We also need highways and gas stations, or no one will be interested in using a
car. We need to build computing infrastructure to realize the full benefits of P2P
applications.

18.1.1 Coordinator

One problem for our models is the difficulty in finding the power servers. We
can solve this problem by adding a coordinator to the system as in Fig. 18.1. The
coordinator is a computer which will store the IP addresses of all power servers
and the servlets of the applications.

The client stores the servlets on the coordinator. Any computer owner who
wants to donate their computer power to the network needs to register with the
coordinator and provide the following information:

� IP address of the power server.
� Type of processor on the power server.
� When and how long it is available.
� The size of memory on the server.

The coordinator is not involved in the actual computation. It plays the role of a
broker. It will find power servers which will be able to do the actual computation
for the requesting user. The tasks of coordinator are as follows:

� Allow new users to register.
� Maintain the database of registered power servers’ information.
� Match user’s requirements with power servers and pass the IP addresses of power

servers to the user.
� Transfer servlets to the power servers.

The user contacts the coordinator to get the IP addresses of available power
servers and uses the IP address to initiate the servlet on the power servers (Fig. 18.1).

240

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Incentives 241

Client computer

Coordinator

Power server

IP address

Servlets

Ser
vle

ts

IP
 a

dd
re

ss
 a

nd
 o

th
er

 in
fo

rm
atio

n

IP address of available power server

S
u

b
-t

a
sk

A
n

sw
e

r
o

f
su

b
-t

a
sk

Servlets

Servlets

Figure 18.1. Coordinator and IP addresses.

For very large P2P systems, multiple levels of coordinators (Fig. 18.2) for each
country, city and organization might be necessary. The organization coordinator
will record the IP addresses of computers in its organization. The city coordinator
will record the addresses of all organization coordinators and power servers in the
city. A global system will include many country, city and organization coordinators.
The concept is similar to the domain name server (DNS), which successfully
enables the Internet.

18.2 Incentives

It is obvious that an organization would like to use the spare power of all avail-
able computers. If we want to build a P2P system which consists of different
organizations and individuals, we need to provide incentives to the participants.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

242 18. Infrastructure and Future Development

City 1
coordinator

Country coordinator

Organization 2
coordinator

City N
coordinator

City 2
coordinator

Organization N
coordinator

Organization 1
coordinator

Figure 18.2. Multi-level coordinators.

One way to do this is to set up an association in which members (organizations
and individuals) can share each other’s computing power. In becoming members of
the association, users commit themselves to connecting to the Internet for agreed
amounts of time, allowing other members access to computing resources.

It might also be possible to create a market for surplus computing power. Brokers
would sell the unused processing power of individuals or organizations. Telephone
companies or Internet service providers might provide free services to customers
if they promise to connect their computer to the Internet. The telephone companies
or Internet service provider would then collect and re-sell the unused power from
their customers.

18.3 Maintenance

We need to update the server machines one by one in our model. If we have a large
number of servers, this maintenance job is very time consuming. This drawback
can be overcome by automation. Some web servers have upload functions; the
maintenance job can be alleviated by using these functions. This can be achieved
by uploading the new version of the servlets and can be automated by use of a
special program on the client computer. If the uploading function is not available
in the web server, a special servlet can be deployed in each web server to extend
its ability to handle such requests from the client.

The maintenance job can be further reduced if all participants are within one
organization and their computers are connected in a LAN. Only one copy of the web
server and servlet is installed on the network drive as in Fig. 18.3. Every computer
invokes the web server and servlet using the single version on the network drive
and thus the maintenance job is streamlined.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Maintenance 243

Client computer

Task

queue

Internet/Intranet

Server computer i Server computer N

Result Result
Result

Sub-task Result
HTTP

message

Java application program

Server computer 1

Server
Program

Servlet

Server
Program

Servlet

Sub-
task

Sub-
task

Sub-
task

Server
program

Servlet

HTTP message and
sub-task

H
T

T
P

 m
essage and

sub-task

Load
servlet

Load
servlet

Load
servlet

Web
server

programs

Servlets

LAN

File server

Network
drives

ServletServlet

Web server
programs

Web server
programs

Web server
programs Servlet

H
T

T
P

 m
essage

and sub-task

Figure 18.3. Server and servlets from network drive.

Many operating systems support the sharing of folders from any computer.
This feature can be used if a dedicated network drive is not available in the
system. As described in Fig. 18.4, a client computer can allow other com-
puters to access the web server and servlets. In other words, all programs
will reside in a single computer. It will be easier to develop and maintain the
system.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

244 18. Infrastructure and Future Development

Operating
system with
file sharing

support

Server
program

Servlet

Sub
task

Load
servlet

Operating
system with
file sharing

support

Server
program

Servlet

Sub-
task

Load
servlet

Client
program

Task queue

Web server
program

Servlets
Operating

system with
file sharing

support

Java application
program

Shared disk

W
e

b
 s

e
rv

e
r

p
ro

g
ra

m
s

a
n

d

se
rv

le
ts

H
T

T
P

 m
e

ss
a

g
e

S
u

b
-t

a
sk

R
e

su
lt

R
e

su
lts

Client Computer

W
e

b
 s

e
rv

e
r

p
ro

g
ra

m
s

a
n

d
 s

e
rv

le
ts

H
T

T
P

 m
e

ss
a

g
e

a
n

d
 s

u
b

-t
a

sk

Operating
system with
file sharing

support

Server
program

Servlet

Sub-
task

Load
servlet

W
e

b
 s

e
rv

e
r

p
ro

g
ra

m
s

a
n

d
 s

e
rv

le
ts

H
T

T
P

 m
e

ss
a

g
e

a

n
d

 s
u

b
-t

a
sk

R
e

su
lt

W
e
b
 s

e
rv

e
r

p
ro

g
ra

m
s

a
n
d
 s

e
rv

le
ts

H
T

T
P

 m
e

ss
a

g
e

a
n

d
 s

u
b

-t
a

sk

R
e

su
lt

Network

Server computer 1

Server computer i

Server computer N

Figure 18.4. Web server and servlets from shared disk.

18.4 Future P2P Development

With the advent of new technologies, it is possible to conceive of more complicated
P2P applications for organizations. For example, insurance companies need to
calculate the premiums for their new products and services. They also need to adjust
the premiums for their existing products. Ad hoc calculations are required due to
new diseases such as SARS, bird flu, etc. However, they need to collect statistical
data before they can do the calculations. These data-collecting processes are time

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Problems of Data-Sharing P2P System 245

consuming and expensive. It would be beneficial if large insurance companies
could form P2P systems and share information for such statistical calculations.
Any insurance company could request information from the computers of others
as and when required. This could reduce the cost and time needed to complete
these processes.

These new applications will have different characteristics from those discussed
in Chapters 2 and 3. The numbers of computers in the systems are relatively small
compared with, for example, the Napster system. The owners of these comput-
ers are organizations instead of individuals. More complex database operations
are involved, requiring very efficient distributed algorithms. Unlike the Napster
or anti-cancer programs, security (and/or privacy) is extremely important as each
database belongs to a different organization. They may be happy to share statis-
tical information with other companies, but they also need to protect their own
confidential information. They are, after all, competitors. These differences create
problems and provide new challenges to researchers in this area.

18.5 Problems of Data-Sharing P2P System

Although P2P has become a buzzword nowadays, there are still problems in build-
ing P2P systems (Loo, 2003). One of the most serious problems is in the area
of database operations. Many database operations on a single computer can be
completed within a very short time. However, on a distributed database system,
performing these operations might require many communication messages and so
take a much longer time. Selection is one such time-consuming operation and an
example is available in Loo and Choi, 2002.

One solution is to transfer all data sets to one computer so the operations can
be executed in an efficient way. However, this solution is not feasible in many P2P
systems for the following reasons:

� Security—Transferring all records to one computer may raise security concerns
as each data set belongs to a different owner. Owners of data sets might not be
comfortable transmitting all values of even a single field to other computers.
For example, 10 large companies want to carry out a salary survey in a city
for reference in their annual salary adjustment exercises. With the advent of
JDBC (Reese, 2000), Java technologies (Englander, 2002; Herlihy, 1999) and
new protocols (Herlihy and Warres, 1999; Merritt et al., 2002), it has become
easy to connect heterogeneous computers of these 10 companies to form an ad
hoc P2P system. A company can find out the 25th percentile, medium and 75th
percentile of salary range in that city. Although these 10 companies are happy to
supply data to each other for such statistical calculations, they would not want to
transmit the salary values of every employee via the network, even if the name
of the employee was not included in the process.

� Capacity—Data sets can be extremely large. Typically, no single computer in
a P2P system has the capacity to hold all data sets. Even where one computer

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

246 18. Infrastructure and Future Development

has the capacity to hold all records, this would be inefficient. Holding all the
data on a single computer would use the major part of its memory and slow it
down.

� Performance of the network—Transferring a large amount of data can also over-
load a network. It will slow down other users who are using the network.

In order to make such kind of P2P applications successful in the future, many
distributed database algorithms need to be reviewed and improved. A case is
presented in Appendix 1 so readers can gain better understanding of the problems
and operations of data-sharing (not file sharing) P2P systems.

18.6 Efficient Parallel Algorithms

Now you should be able to modify the programs in this book for your applications.
As discussed in Section 3.4, it is important to design an efficient algorithm before
you develop your programs. As parallel computing is not completely new, you can
find a lot of parallel algorithm in research papers and books. It is possible that you
can get a good algorithm and modify it for your application. In other words, you
do not need to start from scratch and it will take a shorter time to complete your
project.

However, many parallel algorithms are designed with particular computer ar-
chitectures in mind. You need some knowledge of different computer architectures
in order to understand these algorithms.

18.7 Re-Visiting Speed Up

As discussed in Section 3.5, speed up is an important metric for parallel computers
because these kinds of computers are extremely expensive. A 10-processor parallel
computer will usually be more expensive than 10 serial computers with the same
processor. It will also take much longer to develop parallel programs than serial
programs. If the speed up is not good, that means either we are not using the right
facilities for our job or we are using the facilities in the wrong way. Thus, it is not
a cost-effective solution for our application.

Speed up is less important for P2P systems in the sense that computer power is
free (or almost free) as we are using the unused CPU cycles of peer computers. It
will not bother us if the speed up is poor. P2P systems provide a new method for
us to solve very large problems which we cannot handle due to lack of computer
power in the past. Speed up of a large-scale P2P will usually not be very good due
to the following reasons:

� The communication cost (in term of time required) is extremely high, especially
for computers in different countries.

� Owners might shut down the peer computer or use it for other purposes during
the process.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 18, 2006 7:10

Further Improvements 247

Having said that, speed up is still a useful tool for us to measure and compare
different algorithms in P2P system development. For example, a computation-
intensive job can be completed in three months with a poor algorithm, while a good
algorithm will reduce it to one month. Although the computer power is free, the
completion time is still an important factor for many mission critical applications.

I recommend you to conduct experiments with a small number of computers
which are connected by a LAN before the actual deployment of a large-scale P2P
project. You can measure the speed up of different algorithms in such controlled
environment. Although the actual speed up will be quite different in an Internet
environment, these experiments will give you some rough idea of the efficiencies
of different algorithms. Thus, you can pick up the best for your implementation.

18.8 Applications

You need to select the application carefully as the models in this book are not
panaceas for every problem. Some applications are good candidates for parallel
processing, while others are poor candidates. Let us consider two extreme real-life
examples:

� A person travels from one place to another; ten identical cars cannot make the
process faster than one car. More computers will never be able to speed up the
process in some applications.

� From time to time, we heard of cases of wild fire in the forests which last for
many days. It is always better to have more fire fighters to put out such fires,
especially in the early phase. Fire can spread quickly, and delay means we will
only have more fire to fight. More fire fighters can contain the fire earlier. We
can expect a very good speed up as we have less fire to fight.

Most applications are somewhere between the above two extremes. Detailed
study of problems is required for any serious applications. However, speed up is
not the only thing we care about and other factors might be more important for
some applications.

Indeed, examples in Section 18.4 and 18.5 will never achieve any good speed
up at all. We still want to deploy such P2P systems as they will provide substantial
benefits in other areas.

18.9 Further Improvements

Thank you for reading my book! I am a believer in Open Source Software. Please
feel free to modify the programs in this book for any purposes. Certainly there
will be room for improvement in my models, and I will be happy to hear any
suggestions from readers. Updated versions of the programs (contributed by either
you or me) will be available in the book’s website. I will be glad to receive any
feedback (good or bad) from readers (my e-mail address: alfred@ln.edu.hk).

P1: OTE/SPH P2: OTE

SVNY285-Loo October 26, 2006 17:5

Appendix A: Data-Sharing
P2P Algorithm

A.1 New Multiple Distributed Selection Algorithm

The distributed multiple selection algorithm in this appendix was derived from a
single selection algorithm in Loo and Choi (2002) by the authors. The distribution
pattern of the keys of the file is known before the operation begins, thus statistical
knowledge can be applied to find the keys in the file faster than with other algo-
rithms. The objective of this algorithm is to reduce the number of communication
messages.

The objective of a distributed single-selection algorithm is to select one key
(e.g., the 30th smallest key) from a very large file distributed in different comput-
ers. However, it is more likely that we would need to select multiple keys simul-
taneously in real applications. Thus, an efficient multiple-selection algorithm is
required. A special case of the multiple-selection problem is to find p − 1 keys,
i.e., keys with the ranks of n/p, 2n/p, . . . , (p − 1)n/p, in a system with nrecords
and p computers. For example, we need to find out the 30th and 60th smallest key
of a distributed file.

The distributed system model used in this section is presented as follows:

� All computers are connected by broadcast/multicast facilities. For example, com-
puters connected by a LAN with TCP/IP can use this algorithm for their selection
operation.

� A large file is physically distributed among p computers, and n records are
approximately uniformly distributed among p computers (i.e., n/p records for
each computer).

� No computer has enough resources to collect all records and select the keys with
the selected ranks from the file locally.

� We denote the keys in the file as X(i , k) where k is an integer (1–n/p) and i is
the computer number. The keys will be in the following order:

X (i, 1) < X (i, 2) < · · · < X (i, k) < · · · < X (i, n/p) (A.1)

There is no particular sequence for any two keys, e.g., X(i , k) and X(i + 1, k), in
different computers.

248

P1: OTE/SPH P2: OTE

SVNY285-Loo October 26, 2006 17:5

Steps of Distributed Statistical Selection Algorithm 249

� The keys follow a known distribution. The algorithm is suitable for any distri-
bution using the mapping method discussed in the work of Janus and Lamagna
(1985), but the uniform distribution will be used in the example in this chapter.

The objective of this algorithm is to find p − 1 target keys. The rank of each
key is jn/p (where 1 ≤ j ≤ p − 1).

For example, find the 30th and 60th smallest key of a distributed file for a system
with three computers and 90 keys (i.e., n = 90 and p = 3).

Note that this algorithm will be able to find more than p − 1 target keys simul-
taneously. p − 1 keys will be used for explanation purposes in this chapter as we
frequently need to find p − 1 keys in real applications.

A.2 Steps of Distributed Statistical Selection Algorithm

Note that an example is available in Section A.4. It will be easier for reader if they
could refer to the example simultaneously when they read this section.

The statistical selection algorithm is described as follows:

Phase 1
Step 1. One computer will be selected as the coordinator. Each participant

will transmit the maximum and minimum key values in their local file to
the coordinator. The coordinator will calculate the initial p − 1 delimiters’
values. We denote MAX as the maximum key value in the global file and
MIN as the minimum key in the global file.

DELIMITER j = MIN + (MAX − MIN) j

p
(A.2)

where j is an integer starting from 1 to p − 1.
Step 2: The coordinator transmits p − 1 delimiters’ value to all participants.
Step 3: Each computer selects p − 1 pivots. Pivot i, j is the biggest value which

is less than or equal to the delimiter j and i is the computer number and 1 ≤
i ≤ p.
Note that steps 1 and 2 are optional steps. If the maximum and minimum
are known due to some prior operations, then all computers can calculate the
first pivot and communication of these two steps is not required. A schematic
diagram for phase one is presented in Fig. A.1.

Phase 2—Each computer assumes two roles simultaneously (i.e., pivot calculating
and ranks calculating). Sequentially, each computer broadcast pivots with ranks
after the calculations once in each round. The following operations are repeated
until the answers are found. A schematic diagram for this phase is presented in
Fig. A.2.
Ranks calculating role—We denote rank as R[i , j]—number of the keys which

are smaller than pivot i, j in computer i. Each computer will receive p − 1
pivots from one broadcasting computer, and they will compare all keys in

P1: OTE/SPH P2: OTE

SVNY285-Loo October 26, 2006 17:5

250 Appendix A: Data-Sharing P2P Algorithm

Coordinator Other peers

Transmit
maximum and minimum

Calculate
the initial pivots

Broadcast
delimiters

Calculate
p-1

delimiters with
Eq.(A1.2)

p-1 deliminates

Collect maximum and
minimum keys Maximum and minimum keys

Figure A.1. Schematic diagram of the operations in phase 1.

their local files with this pivot. Sequentially, each computer will broadcast
these ranks R[i , j] to other computers.

Pivots calculating role—Each computer will receive (p − 1)2 ranks from other
computers. It will compare its own pivots and calculate the rank of its pivot in
the global file using Eq. (A.3). If the sum of these ranks is equal to the target
rank, then the answer is found and the operation is completed. Otherwise,
each computer will calculate a new pivot according to the method in the next
section. The new pivots will be broadcasted to the coordinator together within
the ranks.

A.3 Calculation of the New Pivot

We denote G as global rank, calculated as follows:

G j =
p∑

i=1

R[i, j] (A.3)

After each probe, each local file will be split into two sub-files. All keys in
the first sub-file will be smaller than or equal to pivot i, j , while all keys in the
second sub-file will be greater than the pivot. The first sub-file will be used for the
next operation if the global rank G j is less than target rank, otherwise the second
sub-file will be used.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 26, 2006 17:5

Calculation of the New Pivot 251

Is its pivot
the right
answer?

Broadcast
initial
pivot

Calculate global rank
of the pivot

(with Eq.(Al.3))

Collect
ranks

from other computers

Inform
other peers
to terminate

Terminate
process

Initial pivot

Rank

Yes ‘End of process’

Pivot-calculating computer Rank-calculating peers

New pivot

Calculate
(with Eq.(Al.4))

and
select new pivot

New pivot

Terminate process

Receive pivot

Compare
pivot

with local keys

Transmit
local rank

Receive either
a new pivot

or
‘End of process’

signal

New pivot
or end of
process?

 signal

End of process signal

No

Figure A.2. Schematic diagram of the operations in phase 2.

The new pivot i, j will be calculated as follows :

N P = O P + (L K − SK) ∗ offset j/N K (A.4)

where NP denotes new value of pivoti, j , OP denotes old value of pivoti, j , LK
denotes largest key of the sub-file, SK denotes smallest key of the sub-file, NK

P1: OTE/SPH P2: OTE

SVNY285-Loo October 26, 2006 17:5

252 Appendix A: Data-Sharing P2P Algorithm

denotes number of keys in the sub-file and

offset j =
jn
p −

p∑
i=1

R[i, j]

p
(A.5)

The smallest key in the remaining sub-file, which is greater than or equal to NP,
will be selected as the new pivot.

A.4 Example

The objective in the following example is to find two target keys. The first target
key is the 30th smallest key, while the second target key is the 60th smallest key
in the global file. It shows all messages broadcasted by all computers from step
2 to step 5 of the algorithm. There are three computers and 30 numbers for each
computer in this example. After each computer sorted its own keys, the keys were
arranged as in Tables A.1 to A.3.

A.4.1 Phase 1—Calculation of Delimiters and Initial Pivots

In this example, we have the following values:

Min = 3 Max = 449 p = 3.

Using Eq. (A.2), we have:

DELIMITER1 = 151.6 and DELIMITER2 = 300.3.

Table A.1. Keys in computer 1 after phase 1

(1–10)th keys 16 22 38 47 48 66 86 94 101 105

(11–20)th keys 170 191 193 207 226 251 273 305 324 332

(21–30)th keys 337 348 375 381 404 412 425 444 446 449

Table A.2. Keys in computer 2 after phase 1

(1–10)th keys 34 35 45 55 77 79 151 185 187 196

(11–20)th keys 200 206 240 244 249 280 294 295 366 367

(21–30)th keys 373 383 393 394 395 423 425 430 443 444

Table A.3. Keys in computer 3 after phase 1

(1–10)th keys 3 26 44 45 65 76 101 106 145 167

(11–20)th keys 183 187 193 215 226 246 249 254 255 263

(21–30)th keys 266 319 325 330 342 359 359 399 405 410

P1: OTE/SPH P2: OTE

SVNY285-Loo October 26, 2006 17:5

Example 253

In computer 1, 105 is the biggest value which is less than 151.6. Key 273 is the
biggest value which is less than 300.3. Thus, 105 and 273 are selected as the pivots
for round 1 operation.

Computer 2 selects 151 and 295 as initial pivots, while computer 3 selects 145
and 266.

A.4.2 Phase 2—Messages in Round 1

In the first round, computer 1 broadcasted two pivots—105 and 273. As no other
computers broadcasted any pivot, computer 1 did not broadcast any R[i , j] so the
special character ‘-’ was broadcasted.

Computer 2 compared 105 and 273 (pivots from computer 1) with its keys. Six
keys were less than 105, and 15 keys were less than 273. Computer 2 broadcasted
these two ranks (6 and 15) together with its pivots 151 and 295.

Computer 3 compared the first pivot (105) from computer 1 with its keys, and
seven keys were less than or equal to 105. It also compared the first pivot (151)
from computer 2 with its keys, and nine keys were less than 151.

In a similar way, computer 3 compared the second pivot (273) from computer
1 with its keys, and 21 keys were less than or equal to 273. It also compared the
second pivot (295) from computer 2 with its keys, and 21 keys were less than 295.

The pivots of computer 3 were 145 and 266. Computer 3 transmitted these pivots
together with two pairs of ranks (i.e., 7, 9 and 21, 21). The messages in round 1
are summarized in Table A.4, while a schematic diagram showing the interaction
of computers in round 1 is presented in Fig. A.3.

A.4.3 Phase 2—Messages in Round 2

In round 2, computer 1 performed the following steps:

Step 1

� The local rank of the first pivot 105 (transmitted by computer 1 itself in
round 1) was 10 in computer 1. Computer 1 also received the ranks 6 and 8

Table A.4. Communication message in the process.

Message k = 1 k = 2

broadcasted

Round by Pivot Response to pivot Pivot Response to pivot

1

Computer 1 105 &a —b — 273 & — —

Computer 2 151 6 & — 295 15 & —

Computer 3 145 8 9 & 266 21 21 &

aThe symbol ‘&’indicates that this field is not used by the computer as there is no need to broadcast

the local rank of its own pivot.
bThe symbol ‘—’ indicates that the computer is not using this field to broadcast the rank.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 26, 2006 17:5

254 Appendix A: Data-Sharing P2P Algorithm

Computer 1 broadcasts
its pivots 105 and 273
to computers 2 and 3

Computer 2 responses
by sending rank 6 and

15 to computer 1

Computer 3 responses
by sending rank 7 and

21 to computer 1

P
iv

ot
: 1

05
R

es
po

ns
e:

 6

P
iv

ot
: 1

05
R

es
po

ns
e:

 7Computer 1

Computer 2 Computer 3

Pivot: 273
Response: 15

Pivot: 273

Response: 21

Figure A.3. Schematic diagram showing the interactions between computers in round 1.

from computer 2 and 3, respectively (as from Fig. A.3). The global rank of
105 was 10 + 6 + 8 = 24. Computer 1 knew that key 105 was not the 30th
smallest key.

� Using Eq. (A.5), the offset from the target was:

(30 − 24)/3 = 2.

� Using Eq. (A.4), the new search value was

105 + [(449 − 105) ∗ 2]/(30 − 10) = 139.4.

� Key 170 was chosen for the next pivot as it was the smallest key which was
greater than or equal to 139.4.

Step 2

� Computer 1 examined the number of keys which were less than or equal to
pivot 151 (the pivot value transmitted by computer 2). Ten keys were less than
151.

� Computer 1 examined the number of keys which were less than or equal to the
pivot value 145 (the pivot value transmitted by computer 3). Ten keys were
less than 145.

Step 3

� The local rank of the second pivot 273 (transmitted by computer 1 itself in
round 1) was 17 in computer 1. Computer 1 also received the ranks 15 and
21 from computer 2 and 3, respectively (as from Fig. A.3). The global rank

P1: OTE/SPH P2: OTE

SVNY285-Loo October 26, 2006 17:5

Example 255

of 105 was 17 + 15 + 21 = 53. Computer 1 knew that key 273 was not the
60th smallest key.

� Using Eq. (A.5), the offset from the target was

(60 − 53)/3 = 2.34

� Using Eq. (A.4), the new search value was

273 + [(449 − 273) ∗ 2.34]/(30 − 17) = 304.68.

� Key 305 was chosen for the next pivot as it was the smallest key which was
greater than or equal to 304.68.

Step 4

� Computer 1 compared 151 and 295 (pivots from computer 2 in round 1) with
its keys. Ten keys were less than 151, and 17 keys were less than 295.

� It also compared 145 and 266 (pivots from computer 3 in round 1). Ten keys
were less than 145, and 16 keys were less than 266.

Step 5

� Computer 1 broadcasted 2 pairs of ranks together with its new pivots 170 and
305.

In round 2, computer 2 performed the following steps:

Step 1

� The local rank of pivot 151 (first pivot of computer 2) was 7 in computer
2. Computer 2 also received the ranks 9 and 10 from computer 1 and 3,
respectively. The global rank of 151 was 7 + 9 + 10 = 26, thus computer 2
confirmed that 151 was not the 30th smallest key.

� Using Eqs. (A.4) and (A.5), key 185 was chosen as the new pivot.

Step 2

� Computer 2 examined the number of keys which were less than or equal to
pivot 170 (the pivot value transmitted by computer 1 in round 2). Seven keys
were less than 170.

� Computer 2 examined the number of keys which were less than or equal to
the pivot value 145 (the pivot value transmitted by computer 3 in round 1).
Six keys were less than 145.

Step 3

� Computer 2 compared 305 (second pivots from computer 1 in round 2) with its
keys. Eighteen keys were less than 305. It also compared 266 (second pivots
from computer 3 in round 1); 15 keys were less than 266.

Step 4

� The local rank of pivot 295 (second pivot of computer 2) was 18 in computer
2. Computer 2 also received the ranks 21 and 17 from computer 1 and 3,

P1: OTE/SPH P2: OTE

SVNY285-Loo October 26, 2006 17:5

256 Appendix A: Data-Sharing P2P Algorithm

respectively. The global rank of 295 was 18 + 21 + 17 = 56; thus computer
2 confirmed that 295 was not the 60th smallest key.

� Using Eqs. (A.4) and (A.5), key 366 was chosen as the new pivot.

Step 5

� Computer 2 broadcasted these two pairs of ranks together with its new pivots
185 and 366.

In round 2, computer 3 performed the following steps:

Step 1

� The local rank of pivot 145 was 9 in computer 3. Computer 3 also received
the ranks 10 and 6 from computer 1 and 2, respectively. The global rank of
145 was 9 + 10 + 6 = 25; thus computer 3 confirmed that 145 was not the
30th smallest key.

� Using Eqs. (A.2) and (A.1), key 167 was chosen as the new pivot.

Step 2

� Computer 3 examined the number of keys which were less than or equal to
pivot 170 (the pivot value transmitted by computer 1). Ten keys were less than
170.

� Computer 3 examined the number of keys which were less than or equal to
the pivot value 185 (the pivot value transmitted by computer 2). Eleven keys
were less than 170.

Step 3

� The local rank of pivot 266 was 21 in computer 3. Computer 3 also received
the ranks 16 and 15 from computer 1 and 2, respectively. The global rank of
266 was 21 + 16 + 15 = 51; thus computer 3 confirmed that 266 was not the
60th smallest key.

� Using Eqs. (A.4) and (A.5), key 319 was chosen as the new pivot.

Step 4

� Computer 3 compared 305 (second pivots from computer 1 in round 2) with
its keys. Twenty-one keys were less than 305. It also compared 366 (second
pivot from computer 2 in round 2); 27 keys were less than 366.

Step 5

� Computer 3 broadcasted these two pairs of ranks together with its new pivots
167 and 319.

The messages in round 2 were summarized in Table A.5.

A.4.4 Phase 2—Messages in Round 3

In the third round, computer 1 calculated the global rank of its two pivots in round
2, and they were not the 30th and 60th smallest keys. Computer 1 compared 185

P1: OTE/SPH P2: OTE

SVNY285-Loo October 26, 2006 17:5

Example 257

Table A.5. Communication message in the process.

Message k = 1 k = 2

broadcasted

Round by Pivot Response to pivot Pivot Response to pivot

2

Computer 1 170 &a 10 10 305 & 17 16

Computer 2 185 7 & 6 366 18 & 15

Computer 3 167 10 11 & 319 21 27 &

aThe symbol ‘&’ indicates that this field is not used by the computer as there is no need to broadcast

the local rank of its own pivot.

and 366 (pivots from computer 2 in round 2) with its keys. Eleven keys were less
than 185, and 22 keys were less than 366. It also compared 167 and 319 (pivots
from computer 3 in round 2). Ten keys were less than 167, and 18 keys were less
than 319. Computer 1 broadcasted these two pairs of ranks together with its new
pivots 191 and 324.

Computer 2 calculated the global rank of its two pivots broadcast in round 2.
The 30th smallest key was 185 so it is one of the answers. It broadcasted four ‘E’
characters so that other computers stopped searching for the 30th key. On the other
hand, 366 was not the 60th smallest key. However, computer 2 confirmed that the
answer was not in its sub-file, so it broadcasted an ‘E’ character in its second pivot
field. In other words, computer 2 knew that the 60th key is not in computer 2.
Computer 2 also compared 324 (pivots from computer 1 in round 3) with its keys.
Eighteen keys were less than 324. It also compared 319 (pivot from computer 3 in
round 2). Eighteen keys were less than 319. Computer 2 broadcasted these pairs
of ranks.

Computer 3 calculated the global rank of its pivot broadcast in round 2. The 60th
smallest key was not 319 so a new pivot 330 was chosen. Computer 3 compared
324 (pivot from computer 1 in round 3) with its keys. Twenty-two keys were less
than 324. Computer 3 broadcasted the rank 22 together with its new pivot 330. As
computer 2 did not broadcast any rank in this round, there was no need to compare
the pivot of computer 2. Computer 3 broadcasted ‘E’ character in this rank field.
The messages in round 3 are summarized in Table A.6.

Table A.6. Communication messages in round 3.

Message k = 1 k = 2

broadcasted

Round by Pivot Response to pivot Pivot Response to pivot

3

Computer 1 191 &a 11 10 324 & 22 18

Computer 2 Eb E E E E 18 E 18

Computer 3 E E E E 330 22 E &

aThe symbol ‘&’ indicates that this field is not used by the computer as there is no need to broadcast

the local rank of its own pivot.
b ‘E’ indicates that the computer is not using this field as it reaches the end of operation.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 26, 2006 17:5

258 Appendix A: Data-Sharing P2P Algorithm

A.4.5 Phase 2—Messages in Round 4

In the fourth round, computer 1 calculated the global rank of its pivot (transmitted
in round 3) and it was not 60th smallest key. Computer 1 compared 330 (pivot from
computer 3 in round 3) with its keys. Nineteen keys were less than 330. Computer
1 broadcasted this rank 19 together with its new pivot 332.

Computer 2 did not broadcast any pivot in the last round so it did not need
to calculate the global rank of its pivot. Computer 2 compared 332 (pivot from
computer 1 in round 4) with its keys. Eighteen keys were less than 332. Com-
puter 2 compared 330 (pivot from computer 3 in round 3) with its keys. Eigh-
teen keys were less than 330. Computer 2 broadcasted this pair of ranks (18 and
18).

Computer 3 calculated the global rank of its pivot in round 3, and it was not the
60th smallest key. Computer 3 compared 332 (pivot from computer 1 in round 4)
with its keys. Twenty-four keys were less than 332. Computer 3 broadcasted this
rank 24 together with its new pivot 325 (Table A.7).

Table A.7. Communication message in the process.

Message k = 1 k = 2

broadcasted

Round by Pivot Response to pivot Pivot Response to pivot

4

Computer 1 Ea E E E 332 &b E 19

Computer 2 E E E E E 18 E 18

Computer 3 E E E E 325 24 E &

b‘E’ indicates that the computer is not using this field as it reaches the end of operation.
bThe symbol ‘&’ indicates that this field is not used by the computer as there is no need to broadcast

the local rank of its own pivot.

A.4.6 Phase 2—Messages in Round 5

In the fifth round, computer 1 calculated the global rank of its pivots in round
4, and it was not the 60th smallest key. Computer 1 compared 325 (pivot from
computer 3 in round 4) with its keys. Nineteen keys were less than 325. Computer
1 confirmed the 60th key was not in its sub-file by broadcasting an ‘E’ character
in its second pivot position together with the rank 19.

Computer 2 did not broadcast any pivot in the last round so it did not need
to calculate the global rank of its pivot. Computer 2 compared 325 (pivot from
computer 3 in round 4) with its keys. Eighteen keys were less than 325. Computer
2 broadcast this rank (18) together with seven ‘E’ characters.

Computer 3 calculated the global rank of its pivot (325) in round 3. The 60th
smallest key was 325 so this was the answer. Computer 3 broadcasted ‘E’ character
on all fields so that all computers stopped.

The communication messages in round 5 are summarized in Table A.8.

P1: OTE/SPH P2: OTE

SVNY285-Loo October 26, 2006 17:5

Example 259

Table A.8. Communication message in round 5.

Message k = 1 k = 2

broadcasted

Round by Pivot Response to pivot Pivot Response to pivot

5

Computer 1 E E E E E E E 19

Computer 2 E E E E E E E 18

Computer 3 E E E E E E E E

A.4.7 Phase 2—Messages in the Whole Process

It took five rounds to complete the process. All messages are summarized in Table
A.9.

Table A.9. Communication messages in the process.

Message j = 1 j = 2

broadcasted

Round by Pivot Response to pivot Pivot Response to pivot

1 Computer 1 105 &a —b — 273 & — —

Computer 2 151 6 & — 295 15 & —

Computer 3 145 7 9 & 266 21 21 &

2 Computer 1 170 & 10 10 305 & 17 16

Computer 2 185 7 & 6 366 18 & 15

Computer 3 167 10 11 & 319 21 27 &

3 Computer 1 191 & 11 10 324 & 22 18

Computer 2 Ec E E E E 18 E 18

Computer 3 E E E E 330 22 E &

4 Computer 1 E E E E 332 & E 19

Computer 2 E E E E E 18 E 18

Computer 3 E E E E 325 24 E &

5 Computer 1 E E E E E E E 19

Computer 2 E E E E E E E 18

Computer 3 E E E E E E E E

aThe symbol ‘&’ indicates that this field is not used by the computer as there is no

need to broadcast the local rank of its own pivot.
bThe symbol ‘—’ indicates that the computer is not using this field to broadcast the

rank.
c ‘E’ indicates that the computer is not using this field as it reaches the end of

operation.

P1: OTE/SPH P2: OTE
SVNY285-Loo October 18, 2006 7:11

Appendix B: Useful Websites

Napster

www.napster.com

BitTorrent

http://www.bittorrent.com

Directory of Gnutella

http://www.gnutelliums.com/

P2P resources

http://www.openp2p.com/

http://crypto.stanford.edu/∼mironov/p2p/

Gnuttela Client
BearShare (Windows)

http://www.bearshare.com/
Gtk-Gnutella (Linux/Unix)

http://gtk-gnutella.sourceforge.net/
Gnucleus (Windows)

http://www.gnucleus.com/
LimeWire (Windows, Linux/Unix, Macintosh)

http://www.limewire.com/
Mactella (Macintosh)

http://www.tucows.com/preview/206631
Mutella (Linux/Unix)

http://mutella.sourceforge.net/

Phex (Windows, Macintosh)
http://phex.kouk.de/mambo/

Qtella (Linux/Unix)
http://www.qtella.net/

260

P1: OTE/SPH P2: OTE
SVNY285-Loo October 18, 2006 7:11

Appendix B: Useful Websites 261

Swapper (Windows)
http://www.revolutionarystuff.com/swapper/

XoloX (Windows)
http://www.xolox.nl/

Grid Technology
Grid Computing Environments Working Group
http://www.computingportals.org/

P1: OTE/SPH P2: OTE
SVNY285-Loo October 18, 2006 10:20

Bibliography

Aba, B. and Ozguner, F. 1993. Balance parallel sort on hypercube multiprocessors. IEEE
Transactions on Parallel and Distributed Systems Vol. 4 (3).

Akl, S. 1989. The Design and Analysis of Parallel Algorithms. Englewood Cliffs, NJ:
Prentice Hall.

Akl, S. 1997. Models and Methods, Parallel Computation. Englewood Cliffs, NJ: Prentice
Hall.

Allision, D. and Noga, M. 1982. Usort: An efficient hybrid of distributive partitioning
sorting. BIT 22:137–138.

Amdahl, G. 1967. Validity of Single Processor Approach to Achieving Large Scale Com-
puting Capability, Proc. AFIPS., Reston, VA., pp. 483–485.

Barkai, D. 2002. Peer-to-Peer Computing: Technologies for Sharing and Collaborating on
the Net. Intel Press.

Basham, B., Sierra, K., and Bates, B. 2004. Head First Java Servlet & JSP. O’Reilly.
Beaulieu, M. 2002. Wireless Internet Applications and Architecture: Building Professional

Wireless Application Worldwide. Reading, MA: Addison-Wesley.
Braunl, T. 1993. Parallel Programming. Englewood Cliffs, NJ: Prentice Hall.
Brittain, J. and Darwin, I. 2003. Tomcat: The Definitive Guide. O’Reilly.
Brown, T. 1993. A parallel quicksort algorithm. Journal of Parallel and Distributed Com-

puting 19:83–89.
Campione, M. and Walrath, K. 2001. The Java Tutorial—Object Oriented Programming

for the Internet. Reading, MA: Addison-Wesley.
Carlsson, S. 1993. Sublinear merging and natural mergesort. Algorithms 9:629–648.
Cohen, B. 2003. Incentives build robustness in BitTorrent. The Workshop on Economics of

Peer-to-Peer Systems.
Colin, M. 1993. Queue-mergesort. Information Processing Letters 48.
Cook, J. 2001. WAP Servlets: Professional Developer’s Guide. New York: John Wiley.
Cook, R. 1980. Best sorting algorithm for nearly sorted lists. Communications of the ACM

23.
Culler, E., Singh, J., and Gupta, A. 1999. Parallel Computer Architecture, A Hard-

ware/Software Approach. San Mateo, CA: Morgan Kaufmann.
Curtois, T. 1997. Java Networking and Communications. Englewood Cliffs, NJ: Prentice

Hall.
Dechter, R. and Kleinrock, L. 1986. Broad communications and distributed algorithms.

IEEE Transactions on Computers. c-35(3).

262

P1: OTE/SPH P2: OTE
SVNY285-Loo October 18, 2006 10:20

Bibliography 263

Deitel, P. 2005. Java: How to Program. Englewood Cliffs, NJ: Prentice Hall.
Dobosiewicz, W. 1978. Sorting by distributive partitioning. Information Processing Letter

7:1–6.
Dobosiewicz, W. 1991. Linear probing sort. The Computer Journal 34(4):370–373.
Doob, J.L. 1967. Stochastic Processes. New York: John Wiley.
Eddy, W. 1995. How many comparison does quicksort uses? Journal of Algorithms 19.
Englander, R. 2002. Java and Soap. O’reilly.
Erkio and Hannu. 1984. The worst case permutation for medium-of-three quicksort. The

Computer Journal 27(3):276–277.
Evans, M. and Hastings, N. 1993. Statistical Distributions. New York: John Wiley.
Flynn, M. 1966a. Very high speed computing systems. Proceeding of IEEE.
Flynn, M. 1996b. Parallel computers were the future and may yet be. Computer, IEEE.
Foo, S., Hoover, C., and Lee, W. 2001. Dynamic WAP Application Development. Manning.
Foster, I. 1994. Designing and Building Parallel Programs. Reading, MA: Addison-Wesley.
Fountain, T. 1994. Parallel Computing. Cambridge University Press.
Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Nitzberg, B., Saphir, W., and Snir,

W. 1997. MPI-The Complete Reference, Vol. 2, The MPI Extensions. Cambridge, MA:
MIT Press.

Hamilton, G., Cattell, R., and Fisher, M. 1997. JDBC Databases Access with Java: A
Tutorial and Annotated Reference. Reading, MA: Addison-Wesley.

Harold, E. 2001. Java I/O. O’Reilly.
Harold, E. 2004. Java Network Programming. O’Reilly.
Herlihy, M. 1999. The Aleph Toolkit: Support for Scalable Distributed Shared Objects.

Network-based parallel computing–communication, architecture and applications.
Lecture Notes in Computer Science 1602, Springer.

Herlihy, M. and Warres, M. 1999. A Tale of Two Directories: Implementing Distributed
Shared Objects in Java, Concurrency. Practice and Experience 12(7): 555–572.

Hinton, J. and Pinder, A. 1993. Transputer Hardware and System Design. Englewood Cliffs,
NJ: Prentice Hall.

Hoare, C.A.R. 1961. Quicksort. Computer Journal 5(1):10–15.
Hockney, R. and Jesshope, C. 1998. Parallel Computers 2: Architecture, Programming and

Algorithms. London: Adam Hilger.
Hord, R. 1999. Understanding Parallel Supercomputing. IEEE Press.
Huang, J.H. and Kleinrock, L. 1990. Distributed selectsort sorting algorithms on broadcast

communication networks. Parallel Computing.
Hughes, M., Shoffner, M., and Hamner, D. 1999. Java Network Programming. Greenwich:

Manning.
Hunter, J. 1998. Java Servlet Programming. O’Reilly.
Hunter, J. 2001. Java Servlet Programming. O’Reilly.
Hwang, K. and Briggs, A. 1984. Computer Architecture and Parallel Processing. McGraw

Hill.
Hwang, K. and Xu, X. 1998. Computer Architecture and Parallel Processing. McGraw Hill.
Hwang, K. 1993. Advanced Comptuer Architecture. McGraw Hill.
Ian, O. 1993. Programming Classics: Implementing the World’s Best Algorithms.

Englewood Cliffs, NJ: Prentice Hall.
Janus P. and Lamagna E. 1985. An adaptive method for unknown distributions in distributive

partitioned sorting. IEEE Transactions on Computer c-34(4):367–371.
Jebson, B. 1997. Java Database Programming. New York: John Wiley.

P1: OTE/SPH P2: OTE
SVNY285-Loo October 18, 2006 10:20

264 Bibliography

Johnson, N.L. and Kotz, S. 1969. Distributions in Statistics. New York: John Wiley.
Kamath, C. 2001. The Role of Parallel and Distributed Processing in Data Mining, Newslet-

ter of the Technical Committee on Distributed Processing. IEEE Computer Society,
Spring.

Khermouch, G. 1994. Large computers—parallelism to the fore. IEEE Spectrum January,
1994.

Knuth, D.E. 2005. The Art of Computer Programming. Reading, MA: Addison-Wesley.
Kumar, V. 1994. Introduction to Parallel Computing. Reading, MA: Addison-Welsey.
Lakshamivarahan, S. and Dhall, D. 1990. Analysis and Design of Parallel Algorithms.

McGraw Hill.
Lamm, G., Falauto, G., Estrada, J., and Gadiyaram, J. 2001. Bluetooth wireless networks

security features. Proceedings of the 2001 IEEEE Workshop on Information Assurance
and Security.

Lea, D. 1997. Concurrent Programming in Java. Addison Wesley.
Leighton T. 1992. Tight bounds on the complexity of parallel sorting. IEEE.
Leuf, B. 2002. Peer to Peer. Reading, MA: Addison-Wesley.
Li, X., Lu, P., Schaeffer, J., Shillington, J., Wong, P., and Shi, P. 1993. On the versatility of

parallel sorting by regular sampling. Journal of Parallel Computing 14.
Lin, S., Wang, H., and Zhang, C. 1997. Statistical tolerance analysis based on beta distri-

butions. Journal of Manufacturing Systems 16(2):150–158.
Liu, X. 1992. An efficient parallel sorting algorithm. Information Processing Letter 43.
Long, L. and Long, N. 1998. Computers. Englewood Cliffs, NJ: Prentice Hall.
Loo, A. July 1989. Application of “key distribution” in very large database. Proceedings of

International ASME Conference, Brighton, UK, 165–169.
Loo, A. 1990. Pivot selection in sorting algorithms.;roceeding of ASME Conference, China.
Loo, A. and Ng, J. 1991. Distributed statistical sorting algorithm. Proceeding of SICON,

Singapore, 222–225.
Loo, A. and Yip, R. 1991. Parallel statistical sorting algorithms. Proceeding of International

Conference on concurrent Engineering and Electronic Design, UK, 165–168.
Loo, A., Chung, C., Fu, R. and Lo, J. 1995. Efficiency measurement of distributed statistical

sorting algorithms. Proceeding of Applications of High Performance Computing in
Engineering, Italy.

Loo, A. and Bloor, C. 1999. Parallel computing with java and Intranet/Internet. Microcom-
puter Applications 18(3).

Loo, A. and Choi, C. 2002. Peer to peer selection algorithm for Internet. Internet Research
12(1).

Loo, A. 2003. The future of peer-to-peer computing. Communications of ACM 46(9):57–61.
Loo, A. 1993. Performance evaluation of efficient parallel sorting algorithms for supercom-

puters. Proceedings of Applications of Supercomputers in Engineering 93 Conference,
UK.

Loo, A. 2005. Distributed multiple selection algorithm for peer-to-peer systems. Journal of
Systems and Software 78(3).

Loo, A., Bloor, C., and Choi, C. 2000. Parallel computing using web servers and servlets.
Journal of Internet Research: Electronic Networking Applications and Policy 10(2).

Looseley, C. and Douglas F. 1998. High Performance Client/Server: A Guide to Building
and Managing Robust Distributed Systems. New York: John Wiley.

Lorin, H. 1975. Sorting and Sort System. Reading, MA: Addison-Wesley, pp. 347–365.
Maufer, T. 1998. Deploying IP Multicast in the Enterprise. Englewood Cliffs, NJ: Prentice

Hall.

P1: OTE/SPH P2: OTE
SVNY285-Loo October 18, 2006 10:20

Bibliography 265

McCracken, D. and Salmon, W. 1989. A Second Course in Computer Science with Pascal.
New York: John Wiley.

Meijer H. and Akl S.G. 1980. The design and analysis of a new hybrid sorting algorithm.
Information Processing Letter 10:213–218.

Miller, C. 1998. Multicast Networking and Applications. Reading, MA: Addison-Wesley.
Miller, M. 2001. Discovering P2P. Sybex.
Moffat, A. and Peterson, O. May 1992. An overview of adaptive sorting. Australian Com-

puter Journal.
Moldovan, D. 1993. Parallel Processing. San Mateo, CA: Morgan Kaufmann.
Moodie, M. 2005. Pro Jakarta Tomcat 5. Apress.
Moore, D. and Hebeler, J. 2002. Peer-to-Peer: Building Secure, Scalable, and Manageable

Networks. Osborne.
Moretti, G. 2001. Is Anyone Talking. EDN.
Morse, S. 1994. Practical Parallel Computing. Cambridge, MA: AP Professional.
Moss, K. 1999. Java Servlet. McGraw Hill.
Motzkin, D. 1983. Meansort. Communications of the ACM 26(4).
Noga M.T. 1987. Sorting in parallel by double distributive partitioning. BIT 27:340–348.
Olariu, S. 1995. A fast sorting algorithm in the broadcast communication model. The Nineth

International Parallel Proceedings Symposium.
Oliver, I. 1993. Programming Classics: Implementing the World’s Best Algorithms.

Englewood Cliffs, NJ: Prentice Hall.
Oram, A. 2001. Peer-to-Peer. O’Reilly.
Orfali, R. and Harkey, D. 1998. Client/Server Programming with Java and CORBA. New

York: John Wiley.
Osterhuag, A. 1989. Guide to Parallel Programming. Englewood Cliffs, NJ: Prentice Hall.
Panda, D. and Wi, L. 1997. Special issue on workstation clusters and network-based com-

puting. Journal of Parallel and Distributed Computing 40:1–3.
Park, S., Ganz, A., and Ganz, Z. 1998. Security Protocol for IEEE 802.11 Wireless Local

Area Network, Mobil Network and Application. pp. 237–246.
Perry, B. 2004. Java Servlet and JSP Cookbook. O’Reilly.
Pitzer, B. 2002. Using Groove 2.0. Que.
Poon, S. and Jin, Z. 1986. Multiqueue quicksort. Journal on Research and Development in

Computer 23.
Quinn, M.J. 1994a. Parallel Computing : Theory and Practice. McGraw Hill.
Quinn, M.J. 1988. Parallel Sorting Algorithms for Tightly Coupled Multiprocessors, Parallel

Computing.
Quinn, M.J. 1994b. Designing Efficient Algorithms for Parallel Computer. McGraw Hill.
Reese, G. 2000. Database Programming with JDBC and Java. O’Reilly.
Rowe, W. 1998. Introduction to Data Structures and Algorithms with C++. Englewood

Cliffs, NJ: Prentice Hall.
Scowen, R.S. 1956. Quicksort: Algorithms 271, Communications of the ACM, 8.
Sedgewick, R.S. 1975. Quicksort. Ph.D. Thesis. Stanford University.
Sedgewick, R. 1977. The analysis of quicksort program. Acta Information 7:87–97.
Sedgewick, R. 1997. An Introduction to the Analysis of Algorithms. Reading, MA: Addison-

Wesley.
Shaffer, C. 1997. Data Structures and Algorithm Analysis. Englewood Cliffs, NJ: Prentice

Hall.
Share, J. 1973. Second thoughts on parallel processing. Computer Electronic Engineering

1:95–109.

P1: OTE/SPH P2: OTE
SVNY285-Loo October 18, 2006 10:20

266 Bibliography

Shell, D. 1959. A high speed sorting procedure. Communications of the ACM 2:30–32.
Siegel, H. 1992. Interconnection Networks for Large-Scale Parallel Processing. McGraw

Hill.
Smith, G. 1994. Statistical Reasoning. McGraw Hill.
Standish, T. 1998. Data Structures in Java. Reading, MA: Addison-Wesley.
Steelman, A. and Murach, J. 2003. Java Servlets and JSP. Mike Murach & Associate, Inc.
Steinmetz, R. and Wehrle, K. 2005. Peer-To-Peer Systems and Applications. Springer.
Stone H.S. 1978. Sorting on star. IEEE Transactions on Software 2.
Stone, H. 1980. Introduction to Computer Architecture. Chicago, IL: Science Research

Associates.
Sun Microsystems. 1999. High-Speed Database Backup on SunTM Systems [online]. Avail-

able from: www.sun.com.
Treleaven, P., Brownbridge, D., and Hopkins, R. March 1982. Data driven and demand

driven computer architecture. Communications of the ACM 14(1):95–143.
Trew, A. 1991. Past, Present, Parallel. Springer Verlag.
Tull, C. 2002. WAP 2.0 Development. Que.
Van Emden, M. 1970. Increasing the efficiency of quicksort, algorithm 402. Communica-

tions of the ACM 13.
Wainwright Roger L. 1985. A class of sorting algorithms based on quicksort. Communica-

tions of the ACM 28:396–277.
Walsh, A. 1996. Foundations of Java Programming for the World Wide Web. IDG books

Worldwide, Inc.
Watson,W.A., Philipson, T., and Oates, P.J. 1981. Numerical Analysis. London: Edward

Arnold.
Wegner, L.M. 1982. Sorting a distributed file in a network. Proceedings of Conference

Information Science System, New Jersey.
Weiss, M.A. 1991. Empirical study of the expected running time of shellsort. The Computer

Journal 34(1):88–90.
Wilson, G. 1995. Practical Parallel Processing. MA: Massachusetts Institute of Technology.
Yousif N. and Evans D. 1984. Parallel distributive partitioned sorting methods. International

Journal of Computer Mathematics 15:231–255.
Zhang, Z. 1990. The research of increasing the efficiency of quicksort. Proceeding of ASME

Conference, China, 1–9.
Zomaya, A. 1995. Parallel Computing: Paradigms and Applications. International Thomson

Company Press.

P1: OTE/SPH P2: OTE
SVNY285-Loo October 18, 2006 7:11

Index

Amdahl’s Law 24
Anti-cancer Project, 20
Apache Tomcat, 35
Applet, 35

Batch Mode, 1
Binary Tree, 217
Bisection Width, 216
BitTorrent, 13
Bluetooth, 189

CGI, 34
Client/Server, 5
Coarse Grain, 214
Complete Connection, 221
Context Parameter, 96
Coordinator, 240

Datagram, 57, 79, 79
Destroy(), 58, 60
Diameter, 215
Distributed Selection, 248
Distributed Shared Memory Multiprocessor,

212
Distributed Sorting, 238
Distributive Partition Sort, 233
doDelete(), 58, 60
doGet(), 58, 60
doHead(), 58, 60
doPost(), 58, 60

Efficiency, 24
Extensible Markup Language, 192

File-Sharing, 9
Fine Grain, 214
Flynn’s Classification, 209

Global Parameter, 95
Gnuttela, 10
GPRS, 192
Granularity, 213

HTTP, 34
Hypercube, 219

IDE, 91
IEEE802.11, 189
Infrared, 188
Infrastructure, 240
Init(), 58, 60
Insertion Sort, 228
Integrated Development Environment,

91
Invoker Servlet, 44

J2ME, 192
J2SE, 36
JDK, 36
JSDK, 66

Linear Array, 216
Links, 216
Loosely Coupled Multiprocessor, 212

Mesh, 218
MIMD, 210, 211
MISD, 210, 211
Multicast, 57, 85, 90
Multicomputer, 212
Multiple Instruction, Multiple Data Stream,

210, 211
Multiple Instruction, Single Data Streams,

210, 211
Multi-Threads, 73

267

P1: OTE/SPH P2: OTE
SVNY285-Loo October 18, 2006 7:11

268 Index

Napster, 9

On-line Mode, 3

P2P, Definition, 7
Palm, 192
Parallel Quicksort, 235
Parallel Shellsort, 235
PDA, 188
Personal Digital Assistant, 188
Phone Emulator, 201
Power Server Model, 106, 134, 147, 165,

175
Processor Networks, 215

Quicksort, 231

Ring, 216

Scalability, 25
Security Manager, 30
Service(), 58, 60
Servlet, 56
Servlet Collaboration, 57
Servlet Lifecycle, 57
Servlet Mapping, 50
SETI@home, 20
Shared Memory Multiprocessor, 213
Shellsort, 229

SIMD, 209, 210
Single Instruction, Multiple Data Streams, 209,

210
Single Instruction, Single Data Streams, 209,

210
SISD, 209, 210
Smart Phone, 191
SMS, 193
Socket, 69
Speedup, 24, 246
Symbian, 192
Synchronization, 103

Tightly Coupled Multiprocessor, 213
Tomcat Directory, 46

Unicast, 80, 90
URL connection, 67

WAP, 192
Wireless Application Protocol, 192
Web Server, 34
Webapps Directory, 47
Wireless LAN, 190
Wireless P2P, 188
Wireless Router, 190
Windows CE, 192
WML, 192
Wireless Markup Language, 192

